Omnissa Horizon Session Enhancement
SDK Programming Guide

For Horizon 7, Horizon 8, and Horizon Cloud Service

Omnissa Horizon Session Enhancement SDK 4.0

You can find the most up-to-date technical documentation on the Omnissa website at: https://docs.omnissa.com/

https://docs.omnissa.com/

Contents

=Y - 1ol OSSPSR PPPOTSPRPPR 8
INTENAEA AUTIENCE ..ttt bbbt bbbt b e bbb et e bt et e s b e e b sb e bt e b e sbn bt abe s 8

Overview of the Omnissa Horizon Session Enhancement SDK.........cocoeeiieiiiniiiniiinie e 9
INEFOAUCTION 10 ThE AP ..ttt h et h e e st e e bt e a b ekt e he e bt e a e e bt ehe e bt eb e et e nbeeneeebeen b e b e ennenneenean 9
What's New in Omnissa Horizon Session Enhancement SDK 4.0c.coiiiiiiiiiiiiiiiiiiiinienieecreeee e 10
Key Concepts of Omnissa HOrizon Session ENNANCEMENT.........iiciiiiiiiiiiiiiee ettt et e ebaea e nreas 11
Ompnissa Horizon Session ENhancement Program FIOWccc.uiiiiiiiiiiie ittt sttt essaaaeenneeas 12
LR O Y o PP PPPPPPPPTPIN 17
L0 102 o Y = SR 19
SCIEEN CAPTUIE APl .ottt ettt e e e e ettt e e e s e s bt e et e e e e e a s e e eeee e e e ane et e ee e e e nsseeeeee e e nnne s eeee e e nnnsseeeeseannneneeeeeaans 20
Virtual Channel and Side Channel SECUIILYeeiieiiieeie ettt ee et e ae et e s e e e e ssaeenseesseeesseesneeenseenseesnseenneennes 20
[[aE =11 =Y o] s DO OO OO TSP PS TSRO PTPRRRPRPOOt 21
SAMPIE COUE .ttt ettt e ettt e ettt e e ettt e e abeeeeabaee e st e e e eabaeeabseeeesaseeeasbeaeaasaeeeasbeeeeabeeeeabaeeeanbeeeeabbeeeanteaeenreas 22

Data TYPES aNd EFTOr COUEBS ...uviiiiiiiiieeiiiiee ettt e eete e st e e e sttt e e s stte e e s sstbeeessasaeeessnsseeesansseeesannsenenan 23
(D 1 T Y o 1= LT PP PP PSP PP PPPPPTRRRPIRt 23
oL O Lo [T PSP UR PR PR PSP 31

Channel INteraction FUNCHIONScoviiiiiieiiee sttt ettt e st e sbe e e siaeesabeesbaeesans 35
VL BrO@OCAST ...ttt bbb bbb bbb bbb bbb bbbt et nb e s e beebe s 36
(T2 G0 g g T ot TP PPRRTPP 36
(T2 B DTS ol o =T o TP P PP 37
VL GEECNANNEISTATE. ..ttt bttt h bbbt et h e e e b e e a e e b h e bt h e et e eh e e a b bt et e nbeeae et enean 37
V1. GEtCONNECHONSTAE ...oiiiiiiiiiii e s e e s b e e s ba e s ab e e s eba e e s aneas 38
VI POI e bbb bbb s b bbb bbb bbbt eb b 38
V1.RegisterChannelNOTITYSINKc.uiiiiiiiicie et e e et a e e et e e e e ba e e eeabeeeaabaeeeabeeesabaeessseaeanseas 39
VL REEISTEIODSEIVE ...ttt ettt ettt e e ettt e e e be e e e ba e e e eabeeeeabaeeeastseeesabeeeeaseeeansseeeasbeeesabaeeasaeeeanaaeeenbeeeansaeeesseas 39
VITRrEAAINTHANZE .ottt b bbbt bbbttt b e e sb b 40
VL TREEAAUNINITIAIIZE ..ottt b e bt et s bt et h e e it e s bt e e e bt e hb e bt e bt et e sb e e st e nbeeabenbeennenbeenean 40
V1.UNregisterChannelNOTIFYSINKccueeiieeieee ettt et e et e et e st e e aeessaeeteeenaeenseesseesnseenneeenseessnennneenses 41

V2 L O LYo =T @ o 1Y VT S 41

A € Y=Y (o] o 1 NV o 1= PSP PPN 42

V2. SWItChTOSTIrEAMDATAIMOEttt h et b ettt e ae et e he e bt e bt e b e eb e e aeesbe e s b e bt nh e et e ebe e b e sbeeneenbeenean 42
LY T | O OO SO U OO PP PRSP 43

RPC FUNCTIONS ettt ettt e e e ettt e e e e e e sttt e e e e e e e e e ausbbeteeeeeeeasanbbeeeeeeeesannnneeaeeeas 45
Y oTo 1T g Lo [\ T o T=Ye LT oY P UPSOPPPRO 46
VL. APPENANAMEARETUINVAL ... eieiiieiie sttt ettt e e e et et e st e et e e see e saessseanseessaeenseensseanseessaesnseenseesnseensaennseenses a7
(A o To 1T g Vo 12T =T H PP RPPPTRP a7
V2 I Y oY oT=Ta Yo | 2= U o N | S 48
O <T@l g oYY T (0] o1 T=T o PP USRS PPPRRP 48
(T2 O =T (=T 0o g 1= PP 49
V1. DESTrOYCNANNEIODIECTvviiiiiiie ettt ettt e ettt e e et e e eab e e e s ataeeesabeeeeabaaeesseeeesbaeeeabeeeasseeeensbeeesabaeeesaeaennres 50
(A D 1T A o Y @] o134 OO PPPPRTPIN 50
VI.GEECOMMANG L.ttt h bbb et bbb e e ab e s b e ab e b e e bbbt bt e s bbbt et e bbb 51
172 B C = o o PP PRRR PSP 51
VL. GEtMINIMAISTrEAMDAASIZE. 1. e ettt ettt ettt h et bt et b e it e st e h e et e e b e et e sbeea b e ebeeae e st e eae e beehn et e nneenean 52
(V2GS o\ T aaT=To [T a4 - Lo FO TSRO P PRSPPI 52
YA Gy N ETaaT=To Lo - [TSR PP USRS 53
VI1.GEENAMEARETUINVAL ...ttt et b e bbb bbb e bbb e sb e eab e bt eat s 54
A CT=T @] o =Tord V-T2 T PRSP PRRPURPPPRRP 54
A CT= {0 o [=To1] = L LI PSP PPPPPPRRP 55
(T2 C = = T - o o PO 55
VL. GEIPAraMOCOUNT ..coiiii e et e et ab e e e s e e e e b e e e e e s e e e a e b e e s b e e e e 56
(Y2 I CT= o 2= U Ty o T@o o =TS RP R UP R ORROPS 56
VL GEERETUIMVAL ...ttt h ettt h bt e b et e bt e st e e bt e he e bt eae e bt e hb et e e bt et e ebeesb e bt ensenbeeaeenteenean 57
VL.GEERETUINVAICOUNT ...ttt h et b e a e bt h et e bt et e e bt e e e s bt e ae e bt e hbeebe e bt et e sb e et e ebe et e nbeeneenbeenean 58
v1.GetStreambDataHEAdEITailc.ciiiiiiiiiiieect bbb 58
v1.GetStreamDataHEaderTailSIZeoiuiiiiiiiiiiiiic e 59
VL. GetSTrEaMDAtAINTOctiiiiiiiii bbbt bbbt 59
V1. GetSTreamDataSiZecuui it 60
VL INVOKE -ttt bttt h e bt eh et e eh e et e e bt e a et R e eaE e bt SR e e et R e e A b e eh e e a e e b e e nb e beehe e bt e n e e benheeteenean 61
(Y2 Y1 {0 a4 - o F USSP R U URR P 61

A =0 \ =Y ' T=Te [@o T 4T g - ' T 1SR 62

AV Y =T = U T T 0o o [PPSR 63

VLVAITANTCIEAT ..ttt ettt h et b et e e bt e h e e bt e bt et e e bt e s et e b e e a b e eb e e a b e e et ea b e b e e b e et e eh e et e nb e e ne e bt e n e e benaneteenean 63
VY T =10 { 6o T YOO PP PPPTOPPPPPPTTPIN 64
VIVArTANTFIOMBIOD ...ttt b e e b s 64
VI VArTANTEIOMOCRNEAI. ...ttt b e bbb bbb bbb bbb 65
VIVari@aNtFrOMDOUDIE ...c..oiiiiiiiiiiii e b bbb bbb bbb sb e 65
VI VArTANTFIOMEFIOAE ...ttt et b bbb bbb bbbt et na et 66
VIVAraNtFrOMINES 2 .o e e s s e e e b e e s ba e b e s ba e 66
VIVAMANTFIOMINTOA ... oo e e s e e e e e s b e e s s e e e s b e e s s be e e s eneas 67
VL VAMTANTEIOMSNONT ...ttt h et b e a e bt e b e et e s bt et e e bt e ae e s bt e ae e bt e hb e bt eb e et e sbeentenbe et e nbeennenbeenean 67
A2 T o ol (0] 4 1] o PO PP OPRRRP 68
VIVariantFrOMUINTS2 .o s a e 68
VIVariaNtFrOMUINTOAooiiiiiiiiiii bbb a e s bbb e sb e s b e s aa e b e 69
VIVArIaNTFrOMUSNOIT ..ottt b e s b bbb bbbt et b e e sbeeae s 69
AT2 YT = o T PP 70
V2. FreeStreambDataPaylOadcuui ittt ettt et e e e e e e bt e e e tbee e e ba e e e abee e e baeeaabeeeebaee e bbaeeanres 70
V2. GEESErEAMDATA ...eiiieeie e bbb e s a e b e s e e e areas 71
V2. GEESTrEAMDATAINTO ...ttt b et b e h et bbbttt h e e bt h e bt bt e b bt et bt et e nneeneenbeenean 72
V2.1SSIAECNANNEIAVAIIADIE ...ttt b e h et b e bt e b e s bt st e b e she et e e bt et e ebeentenneeaean 72
V27 (Yo U3 A o F=T o - T V=] SR 73
AR <1 { @] o LTSS PPPPRIN 73
AT O =TT (=T 0o g (=) TP 75
N CT=1 @] o =To1 (@] oY a o] SR PSP SPPPRRP 75
VA, GETOD ECTSTATEBYNGIME. .. .eiiiiiiieiiie ettt ettt e ettt e e ettt e e eab e e e e aba e e e sabeeesabaaeasbeeeeaseeesbbeeeasbaeeessbeeesabaeesnsaeaeanseas 76

VAL @Y T o - YA S U] Vot o RPN 78
VDPOVerlayGuest_INtErface FUNCTIONSiiiiuiiiiiiiie ettt ettt e et e e ettt e et e e e s ta e e e abeeesabaeeessssaeanbseesnbeaeansseeensnes 78
VDPOVerlayClient_INterface FUNCHIONSuiiiiiiiiciiiec ettt ettt ettt e et e e e s ta e e e sabe e e sabbeeesateaeenbaeeenbeaeansaeeensnes 95

VDPScreenCapture FUNCTIONS ...ttt ettt et e e e e e s a e e e e e e 116
A2 [1 SO PP PPTU PP 116
AT L PP PPPU PRI 116
(ATl d WoTor- 1 [o] o] [o =V O PPUPPRUPRPRRRPPPRINt 117

VL. GETREMOTETOPOIOZY . uviiiiiiieiiiie ettt e ettt e e et e e et e e e s ab e e e e baeeeeabeeeeataeeeaabeeeeasaeeaasbeeeesbeeeesbeaeassaeeasbeeesnbaaesnsseaennns 118

V1. GETHOSTWINAOWBYRECT ...ttt et e ettt e et e e sttt e e bt e e e e abb e e s abeeesabbeesbbeeesabeeesnbeaennns 118

V1. GETHOSTWINAOWBYPOINT.....oiiiiiietee et ettt s bt e e e et e e st e e e s bt e e s abeeeeabbeesnabeeesabeeesnnneeennns 119
(Y2 LY T o W Yo FoT YT ' o Y 2=t U S 120
V1. MapPREMOTETOLOCAIRECT .. .ciiiiiieiiiie ettt ettt e et e e e ba e e e sab e e e esbae e e sbaeeesbaeeeasbeaeassaaesssbeeesbaeeensseaennes 120
VA 1YY o o Tor=1a (oY 011Y, [o e [N OO PPRRPRPRRRPPPRINt 121
V2.REAUBACKSEIEEN ...ttt bbbt h e bt bbbt bbb e sb e bbbt e bbb bbbt b sreen 122
V2.REAUBACKREIEASE ...ttt b bbbt b bbbt b e b e st b e bt saeen 122
R A AT o = ol VAV Ta Vo o1V T A T o] o Yo o =T SR 123
V3.REAUBACKWINUOWBEEZIN. ...ccviieiiieiieeieeetie ettt et et e e e et e et e s teesste e saeaste e seeenseeseeasseeseeanseenseesnseenseeasseensaennseenseenneenn 123
V3.REAABACKWINAOWENT ...ttt et bt b e st b e he et eb e et e e be et e nb e ea b e ebeeane st e ebe e beennenbenneens 125
V3. REAUBACKWWINUOW ...ttt sttt h et bt et b e at e b e eh e e bt e he et e eb e et e eb e e et e nbeeae e bt ensenbeebe e beebeenbenbeens 125
VA, GETREAUBACKCAP@ADIITIES ..vveeiviiiiiiiiie ettt e ettt e e e ta e e e e b e e e eaaea e sbeeeeabseeeasbeeeassaaeaasbeeesnbaeesasseaennns 126
VA, REAABACKWINUOWBEZIN. .. .eiiiiiiiiiiiiee ettt ettt et e et e e ettt e e ab e e e e atb e e e sabeeeeabaeaesbeeeesbeeeesbeeesssseeessseeessaeesnsseaennns 127
V4.GetReadBaCKkWINGAOWINTO ...ttt sttt sb e bbb 128
VA.RegiStErFOrREAUBACKREGUESTS ...c.uviiiiiiiieeiiie ettt e e et e e s e e e e abeeesstaeeeeabeeesabaeessbeeesabaeeensaeaeansaeeenns 129
VA UNregisterFOrREAUBACKREGUESTEScccuiiiiiiii ettt et e st e et e e e e be e e s tb e e e sabeeesabaee e sbeeesnaeeennaeaeansseeens 130
V4. REAUBACKREGUESTUPAALEvvieeeieiieeieeeeie ettt ettt ettt et e st e st e et e et e e teeenaeeseeesseeaseeanseenseesnsaenseeesseeseesnseenseennsenn 130

CRANNEI SINKS <.ttt ettt st e e rat e e st e e s bt e e s abe e s abeesabeeebaeesabeeeateesanee s 132
V1.0NChannelSTatECNANGEM.uiiiiiiiie ettt ettt e e et e e e ba e e e sab e e e esbaee e sbeeeesbseeeasbeaeasssaeassbeeesbaeeeasseaennes 132
V1.0NCoNNECHONSTATECRANGEMeiiiiiiiiiiie ettt e e e eb e e st e e e abe e e s staeeeabeeesabaeesasbeeesabeeessaeaeanseeeenns 132
V1. ONPEEIODJECICIEATEM ..iouuviiiiiiii ettt ettt ettt e e e e sttt e e e bt e e e tbeeeeataeeeeabeeeeabaee e sbeeeesbeeeesbeaeasssaeessseeessaeesasseaennns 133

RPC SINKS 1ottt ettt ettt ettt st e st e e ba e e sa b e e e bt e e st b e e e be e e abeesabe e e bt e e nareeebeeenanes 134
VI ONADOI ..ttt bbb bbb bbb bbb bbbt b bt et b e b b en 134
(T2 1315 To 3 TP 134
VILONINVOKE ..ttt bbbt b e bbb bbbt e ab e bt e sb e bt ab e b e eb b bt e bbb bt bbb b en 135
V1.0N0DJECTSTAtECRANGEMeiiiiiiietie ettt ettt e ettt e e e tb e e e sabe e e ebae e e sbeeeeabaee e abeeeantaaeeeabeeeebaeeeaabaaeanes 135

OVEIIAY SINKS ...ttt e e ettt e e e e ata e e e seataeeesaataeeesaataeeesastaeeesassaeeesnsraeesnnes 137
VDPOVErIayGUESE_SINK FUNCHIONS ...c.iviiiiiiieiciiee ettt et e et e et e e e ba e e e sabe e e s sbaaeesabeeesabaeessbeeesabeeeensaeaeansaeeenns 137
VDPOVErIayCHENt_SiNK FUNCHIONS ...ccuiiiiiiiiecciiee ettt e et e et e et e e e s sba e e e sabeeesabaeessbeeesanaeesnsaeaesnsaeeenns 139

SCrEEN CAPLUINE SINKS ..t e e e e e et e e e e e e e ssrtabteeeeaaeeseastssaeaaaeenans 147

(Y2 @ L Lo e o] oY =4 VT8l o F=T = Yo USSR 147

V3.0NREAABACKWINAOWREAMY ...eeueieiieeiieeeie et siie et ete et et e et ee st ee e teesateesteessaeenseeaseeesseesseeanseessaeensaessseenseesseeenseenseennsenn 147
V3.0NREadBaACKWINAOWDESTIOYEM.ccvieeeiieieeiieeiee ettt e eeesteesste et e sateeteessaeesseessaeenseessseenseessaeensaesnseanseesseeenseenseeenses 148
v3.0nReadBackWindOWREMOTEEITONoiuiiiiiiiiiiiiii ettt sb et san e 148
v4.0nReadBackWindowLoCatIONCRANGEuviiiiiii ittt et et e e e et e e e s ba e e sbbee e e sbaeesabeeesabaeeesbeaens 149
v4.0nReadBackWindowImMageChangGedcuuieiiiiiiiiie ittt ettt ste e ettt e e e be e e e ta e e e sibeeesbbee e sbaeesaseeeasbeeeesseeenns 149

VA, ONREAUBACKREGUESTcuiviieiiiieeiiiieeeitee et e e e ettt e e e bt e e ettt e e e baeeeateeeeataeeeeabeeeeasaeeaasaeeeeaseeeesbeaeassaeeasbeeesbaaesnsseaannns 150

Preface

This document, Omnissa Horizon Session Enhancement SDK Programming Guide, provides information about

developing applications using the Omnissa Horizon® Session Enhancement Application Programming Interface
(API). Omnissa provides several software development kit (SDK) products, each of which targets different developer

communities and platforms.

Intended Audience

This guide is intended for software developers who want to create applications that are used remotely over
connections to Omnissa Horizon 7, Omnissa Horizon 8, or Omnissa Horizon Cloud Service deployments.

NOTE: Within this document, file paths, registry keys, and similar code-related items are revised to reflect the SDK's
use with the Omnissa stack. References to items that were for Horizon versions 2406 and earlier versions contain
asterisks (***) to redact the previous name.

Overview of the Omnissa Horizon Session
Enhancement SDK

With the Omnissa Horizon Session Enhancement Software Development Kit (SDK), you can develop applications
that communicate between a client and a remote desktop over a Horizon connection using the Blast Extreme or
PColP display protocol.

The SDK contains resources such as documentation, include files, and code samples, to help you develop
applications that use the Omnissa Horizon Session Enhancement API.

Introduction to the API

The Omnissa Horizon Session Enhancement API specifies how the client side and the desktop side of an application
can communicate over a Horizon connection. All interactions with the API are asynchronous.

Any software that uses the Horizon Session Enhancement APl must have two components:
m Application
This is the code that runs on a remote desktop.
m Plug-In
This is the code that is installed on a client.
The Horizon Session Enhancement API consists of two distinct APIs:
m Remote Procedure Call (RPC) API

The RPC API provides an asynchronous, callback-driven communication channel between applications that run
on a remote desktop and a plug-in that runs on a client. The RPC API also handles the marshaling and un-
marshaling of parameters.

m Overlay API

The Overlay API solves the problem of displaying rendered images on the client. Images appear to a user as a
local window on the remote desktop.

OpenSSL Issue

The Horizon Session Enhancement APl dynamically loads the OpenSSL library to implement its security features. If a
software's application and plug-in components also dynamically load the OpenSSL library in the same way as the
Horizon Session Enhancement API, you must adhere to the following rules to prevent crashes or exceptions.

1 Plug-in components must not call the CRYPTO_set_locking_callback(),
CRYPTO_set_id_callback(), and CRYPTO_set_add_lock_callback() functions since the remotemks service already

calls these functions.

2 Application components must set up the preceding callbacks before loading the Horizon Session Enhancement
API library. They must also ensure that those callbacks are valid before unloading the Horizon Session
Enhancement API library.

3 If the code is shared by both the plug-in and application components, you must call the preceding three
callback functions if CRYPTO_get_locking_callback() returns NULL. You must call those three functions to set
callbacks at the same time.

Supported Versions of Horizon Software
The Horizon Session Enhancement APl supports the following types of deployments.
m Horizon pods running Horizon 7 or Horizon 8 (Horizon 2006 and later) software.

To support the latest features and interfaces of the Horizon Session Enhancement API, ensure that your
Horizon pods are running on the latest release version of Horizon 7 or Horizon 8.

m First-gen Horizon Cloud Service on Microsoft Azure pods.

To support the latest features and interfaces of the Horizon Session Enhancement API, ensure that
your first-gen Horizon Cloud pods are running on the latest release version of the pod manifest.

m Horizon Cloud Service next-gen Azure Edge deployments.

Note If your deployments are running on an older release version of Horizon software or of the first-gen Horizon
Cloud Service on Microsoft Azure pod manifest, some features and interfaces of the Horizon Session Enhancement

APl are not supported.

Supported Client Operating Systems

The Horizon Session Enhancement APl supports all Windows, Linux, and Mac operating systems that the Horizon
Client software supports. For more information about supported operating systems, see the Omnissa Horizon Client
Documentation.

What's New in Omnissa Horizon Session Enhancement SDK 4.0

The following list summarizes the new features and changes found in version 4.0 of the Omnissa Horizon Session
Enhancement SDK.

m This version of the SDK supports the new Omnissa-branded stack and is also backwards compatible with the

older version as fallback.

m A new screen capture interface has been introduced to assist with capturing the contents of the Horizon client

window

https://docs.omnissa.com/category/Horizon_Clients
https://docs.omnissa.com/category/Horizon_Clients

Key Concepts of Omnissa Horizon Session Enhancement

To effectively use the Omnissa Horizon Session Enhancement AP, it is important to become familiar with the key
concepts in Horizon Session Enhancement.

Connection

A connection refers to a Horizon session over the Blast Extreme or PColP protocol. You cannot alter a connection
through the Horizon Session Enhancement API, but you can determine the current state of a connection. If a
connection is not in the connected state, no action can be taken with the API. You can receive notification of a
change in a connection's state using VDPService_ChannelNotifySink through the v1.0nConnectionStateChanged callback.
You can also retrieve the current state of a connection using the v1.GetConnectionState method that is found in the
VDPService_Channellnterface API.

Channel

A channel represents the link between a remote application and a local plug-in. The state of a channel is not
necessarily the same as the state of a connection.

You can receive notification of a change in the state of a channel through the VDPService_ChannelNotifySink function
that you register with the channel. The vi1.0nChannelStateChanged callback delivers the state change. You can query
the current state of a channel using the v1.GetChannelState method in VDPService_Channelinterface.

Side Channel

A side channel represents an additional link between a remote application and a local plug-in. A side channel
belongs to a channel object and is set up via channel. A side channel can only be established after a channel object
is connected. A side channel is designed to reduce application response time when there is network congestion in
the main channel. For example, an application can use the main channel to transfer real-time control messages and
use the side channel to transfer large amounts of user data.

Channel Context

A channel context is a wrapper for the parameters and return values of a remote call. A channel context holds all of
the information for the receiver of a remote call to determine which method is requested. Interaction with the
channel context is done using VDPRPC_ChannelContextInterface.

Overlay

An overlay is a window or image that is displayed over another so that the image or window overlay appears to be
part of the underlying Ul. This is typically done for video that plays locally, but needs to appear as if it is playing on
the remote desktop.

Remote Procedure Call

A remote procedure call (RPC) is an invocation of a method on a non-local machine. Typically, the remote machine
publishes a set of methods that it responds to, and the client invokes the methods through some channel. A call to
vl.Invoke initiates an RPC.

Sink

A sink is a structure of function pointers and is used to communicate asynchronously with user code via callbacks.
Each API call has one or more sets of sinks. The user must register the sinks to receive the necessary callbacks that
give the user information about state changes or events.

Variant

To ease cross-platform communication, all parameters that are used with the VDP RPC API are wrapped in the
VDP_RPC_VARIANT data type. This data type contains an identifier that indicates the type of data in the structure
and the data itself. The use of variants is done through VDPRPC_Variantinterface.

Omnissa Horizon Session Enhancement Program Flow

A typical Horizon Session Enhancement program flow involves the initialization of an application, a plug-in, threads,
and a channel. It also includes sink registration, the calling of RPC and Overlay APl methods, and shutting down.

Application Initialization

The user controls the startup of the remote side of the Horizon Session Enhancement system.

Upon application launch, the user code calls the VDPService_Serverinit method and gets the
VDP_SERVICE_QUERY_INTERFACE structure. The user code then calls the Queryinterface() method to fetch all the
interfaces that it needs to do its work.

Note If Queryinterface() returns FALSE, your Horizon software version does not support the function interface that

you are trying to fetch.

Plug-In Initialization

On the local side, it is the Horizon Session Enhancement system that initializes the plug-in code. In the
VDPService_Pluginlnit call, the user code must store the passed-in reference to the VDP_SERVICE_QUERY_INTERFACE
structure and use it to request all the interfaces that it needs. At this point the user code is only loaded.

Once the matching application for the loaded plugin starts, VDPService_PluginCreatelnstance is called. In this callback,
the user may return a pointer that is returned in each callback, so that the user code can maintain its state.

To match a plug-in and an application, VDPService calls the plug-in's VDPService_PluginGetTokenName method and
compares the string that is returned with the string that is given by the application. Before returning from the
VDPService_PluginCreatelnstance callback, the user code must call vl.Connect in VDPService_Channellnterface.

Note Due to a limitation in the underlying protocol used, the TokenName variable must be less than 16 bytes in

length.

Sink Registration

To receive callbacks from the Horizon Session Enhancement system, you must register sinks for different
notifications. The first sink to register is VDPService_ChannelNotifySink. This sink notifies you of changes to the
connection state, the channel state, and when the application has created an object. For more information about
object creation, see Channel Object. To register the sink, use the v1.RegisterChannelNotifySink method in
VDPService_Channelinterface. After the sink is registered, you receive a handle for that sink that you can use to
unregister the sink. You must register VDPService_ChannelNotifySink before you call v1.Connect to ensure that you
receive a notification when the channel is available.

After you register VDPService_ChannelNotifySink, you most likely will not receive a callback for a connection state
change. This is because by the time the application or plug-in is started, the connection is likely to be in the
connected state. To confirm that the connection is in the proper state prior to any actions, use the
GetConnectionState method.

In addition to VDPService_ChannelNotifySink, the following sinks exist:
m VDPRPC_ObjectNotifySink
This is for individual channel objects.
m VDPRPC_RequestCallback
This is for callbacks for each RPC call.
m VDPOverlayGuest_Sink
This is for important overlay notifications for the guest.
m VDPOverlayClient_Sink

These are for important overlay notifications for the client.

Thread Initialization

On the application side, the main thread is the one that the user calls VDPService_Serverlnit on. On the plug-in side,
the main thread is the one that the VDPService_PluginCreatelnstance callback is received on. For other threads, you
must call Threadinitialize before you call any other method in the RPC APIs or the Overlay APIs.

If a thread is no longer needed, you must uninitialize it by calling the v1.ThreadUninitialize method.

Channel

For communication to occur, the channel between the application and the plug-in must be active. To initialize the
channel connection, call the vi.Connect method. It must be called on both sides of the connection for each channel.
To shut down a channel, call the v1.Disconnect method.

After you call v1.Disconnect, or whenever the channel is in a disconnected state, you must free all your channel
objects using the v1.DestroyChannelObject method. If the channel is connected again, you must recreate any
required objects.

Query Interface

Querylnterface() returns an interface, or a structure of function pointers. Both applications and plug-ins must call
Querylnterface() to retrieve the necessary interfaces.

The query interface data type VDP_SERVICE_QUERY_INTERFACE is a structure that is defined in vdpService.h. The
application and the plug-in receive a reference to this structure differently. The structure has two members: a
version attribute, and a function pointer. The version attribute notifies the user's application which version of the
APls are available. The function pointer is how the user's code will access the other APIs in the system. The function
pointer has the following definition.

Bool (*Querylnterface) (const GUID *iid, void *iface);
The QuerylInterface() function fetches the functions that the user needs to interact with the

Horizon Session Enhancement API. The following table lists the GUIDs that are defined by Horizon Session
Enhancement and the function lists that the GUIDs return.

Note If Querylnterface() returns FALSE, your Horizon software version does not support the function interface that

you are trying to fetch.

Table 1-1. Horizon Session Enhancement GUIDs — Only showing the latest GUID for each interface

GUID Returned Function List Version Header File
GUID_VDPService_Channelinterface_V1 VDPService_Channelinterface vl vdpService_interfaces.h
GUID_VDPService_Channelinterface_V2 VDPService_Channelinterface v2 vdpService_interfaces.h
GUID_VDPService_Channelinterface_V3 VDPService_Channelinterface v3 vdpService_interfaces.h
GUID_VDPService_Channelinterface_V4 VDPService_Channelinterface va vdpService_interfaces.h
GUID_VDPRPC_ChannelObjectinterface_V1 VDPRPC_ChannelObjectinterface vl vdprpc_interfaces.h
GUID_VDPRPC_ChannelObjectinterface_V2 VDPRPC_ChannelObjectInterface v2 vdprpc_interfaces.h
GUID_VDPRPC_ChannelObjectinterface_V3 VDPRPC_ChannelObjectinterface v3 vdprpc_interfaces.h
GUID_VDPRPC_ChannelObjectinterface_V4 VDPRPC_ChannelObjectinterface va vdprpc_interfaces.h
GUID_VDPRPC_ChannelContextInterface_V1 VDRPC_ChanneContextInterface vl vdprpc_interfaces.h
GUID_VDPRPC_ChannelContextInterface_V2 VDRPC_ChanneContextInterface v2 vdprpc_interfaces.h

GUID_VDPRPC_Variantinterface_V1 VDPRPC_Variantinterface vl vdprpc_interface.h

GUID

GUID_VDPService_Serverinterface_V1

GUID_VDPService_Locallobinterface_V1

GUID_VDPService_Observerinterface_V1

GUID_VDPRPC_StreamDatalnterface_V1

GUID_VDPRPC_StreamDatalnterface_V2

GUID_VDPOverlay_GuestInterface_V1

GUID_VDPOverlay_GuestInterface_V2

GUID_VDPOverlay_GuestInterface_V3

GUID_VDPOverlay_GuestInterface_V4

GUID_VDPOverlay_ClientInterface_V1

GUID_VDPOverlay_ClientInterface_V2

GUID_VDPOverlay_ClientInterface_V3

GUID_VDPOverlay_Clientinterface_V4

GUID_VDPOverlay_ClientInterface_V5

GUID_VDPScreenCapture_Interface_V1

GUID_VDPScreenCapture_Interface_V2

GUID_VDPScreenCapture_Interface_V3

GUID_VDPScreenCapture_Interface_V4

Returned Function List

VDPService_Serverinterface

VDPService_LocallobInterface

VDPService_Observerinterface

VDPRPC_StreamDatalnterface

VDPRPC_StreamDatalnterface

VDPOverlay_GuestInterface

VDPOverlay_GuestInterface

VDPOverlay_GuestInterface

VDPOverlay_GuestInterface

VDPOverlay_ClientInterface

VDPOverlay_ClientInterface

VDPOverlay_ClientInterface

VDPOverlay_Clientinterface

VDPOverlay_ClientInterface

VDPScreenCapture_Interface

VDPScreenCapture_Interface

VDPScreenCapture_Interface

VDPScreenCapture_Interface

The following sample code shows how to request an interface.

VDP_SERVICE_QUERY_INTERFACE qi;
VDPService_Channellnterface ci;

gi.Querylnterface(&GUID_VDPService_Channelinterface_V1, &ci);

Application

Version

vl

vl

vl

vl

v2

vl

v2

v3

v4

vl

v2

v3

v4

v5

vl

v2

v3

v

Header File

vdpService_interfaces.h

vdpService_interfaces.h

vdpService_interfaces.h

vdprpc_interfaces.h

vdprpc_interfaces.h

vdpOverlay.h

vdpOverlay.h

vdpOverlay.h

vdpOverlay.h

vdpOverlay.h

vdpOverlay.h

vdpOverlay.h

vdpOverlay.h

vdpOverlay.h

vdpScreenCapture.h

vdpScreenCapture.h

vdpScreenCapture.h

vdpScreenCapture.h

The user launches the application, which is the component that runs on the remote desktop. After the Application

starts and vdpService.dll is loaded, the application calls VDPService_Serverlnit(). When the application exits, it must

call vDPService_ServerExit().

The following table describes the two server functions.

Table 1-2. Horizon Session Enhancement Server Functions

Function Description

VDPService_Serverlnit The application calls this function when it starts. It must pass an identifying string (the token) to the
function. The function returns a pointer to VDP_SERVICE_QUERY_INTERFACE and the channel handle for this
application, which uses the channel handle to initialize user threads.

VDPService_ServerExit The application calls this function when it closes down.
VDPService_Serverlnit2 Same as VDPService_Serverlnit but for a different session. Caller needs to have sufficient privilege.
VDPService_ServerExit2 Same as VDPService_ServerExit but for a different session. Caller needs to have sufficient privilege.

The following sample code shows how an application initializes.

/* program startup (_tWinMain for example) */

VDP_SERVICE_QUERY_INTERFACE qi;

void *channelHandle;
VDPRPC_Variantinterface vi;
VDPOverlay_Guestinterface ogi;
/* other interfaces omitted */

VDPService_Serverlnit("example" /* token */, &qi, &channelHandle);
gi.Querylnterface(&GUID_VDPRPC_Variantinterface_V1, &vi);
gi.Querylnterface(&GUID_VDPOverlay_Guestinterface_V1, &ogi);

/*.*

Plug-in

The main difference between the plug-in and the application is that the Horizon software loads the code on the

client. Therefore, the user-compiled code must be in a DLL or a shared object that the system loads. The plug-in

must export the following functions.

Table 1-3. Horizon Session Enhancement Exported Plug-In Functions

Function

VDPService_PluginInit

VDPService_PlugininitWithPath

VDPService_PluginExit

VDPService_PluginGetTokenName

Description

Invoked when the DLL or SO is loaded. The plug-in receives its reference to
VDP_SERVICE_QUERY_INTERFACE.

Similar to the VDPService_Plugininit function, but with an additional parameter for the absolute path
to where the plug-in was loaded from the disk.

Invoked when the library is unloaded and the user session ends.

Horizon Session Management uses this function to match the plug-in with the application. The
token that this function returns must match the token that the matching application passes to
VDPService_Serverlnit for communication to occur.

Function Description

VDPService_PluginCreatelnstance Invoked when a new channel's identifier matches the one that

VDPService_PlugingetTokenName returns. More than one instance of a plug-in may exist. Horizon
Session management matches instances of the plug-in to the correct channel.

VDPService_PluginDestroylnstance Called when the channel this plug-in instance runs on closes.

RPC API

With the RPC API, applications and plug-ins can communicate using virtual channels. You must perform all
VDPService initialization steps before you call the RPC API.

Channel Object

Before communication can occur, a channel object with the same name must exist on both sides of the connection.
To create a channel object, call the v1.CreateChannelObject method. It does not matter whether the channel object is
created in the application or in the plug-in first. The initial state of the channel object is disconnected.

When a channel object is created, a message is sent to the other side of the connection, where the callback
function v1.0nPeerObjectCreated is called. To create a matching object, call the vi.CreateChannelObject method. After
the matching object is created, the state of the object on both sides is connected and both sides receive a state
change notification.

After a channel object is connected, you can request a side channel for this object. There are two types of side
channels: virtual side channel and TCP side channel. A virtual side channel is an additional virtual channel. A TCP
side channel is a TCP socket connection between a client and an agent. When a side channel is established and
both sides receive a state change notification, the state of the channel object will change to
VDP_RPC_OBJ_SIDE_CHANNEL_CONNECTED.

For a TCP side channel, an agent application can switch to stream data mode to save resources. In stream data
mode, all VDPService internal threads will be exited and an application has to use a TCP socket to send data to and
receive data from a plug-in. RPC packets can be created and parsed by stream data APls.

Invoke

After you create a channel object, you can invoke an RPC with the vi1.Invoke method. You must make the v1.Invoke
call on the thread that you create the object on, unless the object is configured to allow invoke on any thread.

The v1.Invoke call requires a ChannelContext data structure, which is a wrapper for all the data for the RPC, such as
the command, parameters, and so on. You create a context with the vi1.CreateContext function. After the context is
created, add information for the RPC to the context with the VDPRPC_ChannelContextinterface methods and pass the
context to vl.Invoke. Even though you create the context, if the call to Invoke succeeds, the API is responsible for
freeing the context. This is because of the asynchronous nature of the API. When the call to v1.Invoke returns, the
context might still be in use. If the call to Invoke fails, you are responsible for freeing the context using

v1.DestroyContext.

Each channel context has a unique ID that you can retrieve with the v1.Getld method. The ID of a context that is
passed to an vl.Invoke call is returned as the contextld parameter to the v1.0nDone and v1.0nAbort handlers. You can
use the contextld to map the callbacks back to the original vi.Invoke call. The ID of the context (e.g. the one returned
from context.vl.Getld) that is passed to the v1.0nDone and v1.0nAbort handlers represents the context ID from the
other side of the connection this is why the originating context ID is passed in as a separate parameter.

Variant

All data that you add to a channel context must be in a VDP_RPC_VARIANT data structure. The following code sample
shows how to add data to a variant and append it to a context.

VDP_RPC_VARIANT var;
VDPRPC_Variantinterface varlface;
VDPRPC_ChannelContextInterface ctxtlface;
void *contextHandle;

// Call Variantlnit() before using the variant
// Failure to call VariantInit() can cause memory corruption issues

varlface.vl.Variantinit(&var);

// Add the parameters to the context
varlface.vl.VariantFromInt32(&var, 32);
ctxtliface.vl.AppendParam(contextHandle, &var);

// The same variant can be used for multiple parameters
varlface.vl.VariantFromString(&var, "sample string");
ctxtlface.vl.AppendNamedParam(contextHandle, "sample param", &var);

// Call VariantClear() after all parameters are added to the context
// Failure to call VariantClear() can lead to memory leaks
varlface.vl.VariantClear(&var);

You must call vl.variantinit before using a variant to avoid causing memory corruption and you must call
v1.VariantClear method when you are done with the variant to ensure that all resources are freed.

It is recommended that you use the RPCVariant C++ class included with the sample code which will automatically

call viVariantinit and v1.VariantClear for you.

RPCPlugininstance* plugin;
VDPRPC_Variantinterface varlface;
VDPRPC_ChannelContextInterface ctxtlface;
void *contextHandle;

RPCVariant var(plugin);
// Add the parameters to the context

varlface.vl.VariantFromInt32(&var, 32);
ctxtlface.vl.AppendParam(contextHandle, &var);

// The same variant can be used for multiple parameters
varlface.vl.VariantFromString(&var, "sample string");
ctxtlface.vl.AppendNamedParam(contextHandle, "sample param", &var);

Onlnvoke

On a successful vi.Invoke call, the peer object receives an v1.0nlnvoke callback. In this callback you receive a channel
context. The context contains all of the information for the call. To respond, add the appropriate return code and
return values to the channel context, which is returned to the caller when the v1.0OnInvoke call returns.

Application Shutdown

The application must call VDPService_ServerExit.

Plug-In Shutdown
The following functions are called during the plug-in shutdown process.

m VDPService_PluginDestroylnstance is called when the channel associated with the remote desktop application is
closed. Each call to VDPService_PluginCreatelnstance has a corresponding call to VDPService_PluginDestroylnstance.

m VDPService_PluginExit is called when the Horizon session ends, immediately before the plugin DLL is unloaded.
The plug-in must free all resources and shut down.

Overlay API

With the Overlay API, you can overlay an image on top of another window or image. You typically do this to make
video that is playing on the local client appear as if it is playing in a window on the remote desktop.

Guest Setup

To use the Overlay API, the first step is to initialize the guest interface by calling the v1.Init method. After a
successful initialization, register the window that you want to overlay by calling the v1.RegisterWindow or
v3.RegisterWindow method. The size and position of the registered window are tracked and sent to the client
automatically. If the client does not reject the registered window, you receive the v1.0nOverlayReady callback. When
you receive this callback, you call the v1.EnableOverlay function to display the overlay on the client.

When you are finished with the window, unregister it by calling v1.UnregisterWindow.

Client Setup

On the client, the first step is to initialize the interface by calling v1.Init, which returns a context ID. You use the ID to
identify the plug-in instance. When the guest registers a window, the client is notified through the
v1.0nWindowRegistered sink callback, which gives you a window ID. You need both the context ID and the window ID
to update the overlay.

After you receive the v1.0nOverlayReady callback, you can start displaying your image by calling the vi.Update or
v2.Update method. The APl does not keep a copy of the image unless the copylmage flag is set to true. If you do not
own the image resource or you need to free it, you must set the copylmage flag.

When you are finished with the overlay, call the v1.Exit method.

Screen Capture API

The VDPScreenCapture APl is called from your Session Enhancement SDK plugin that runs on the Horizon Client and
allows you to query information about the topology of the remote desktop as well as capture images of the remote
desktop.

Screen Capture

Use the Screen Capture functions capture an image of the entire remote desktop or a specified area of the remote
desktop.

Read Back Window

The Read Back Window functions allow you to track a window associated with a specific process on the remote
desktop. You can get notifications when it resizes, moves, or updates. You can also capture the image of the
window. These functions are only supported by the Blast protocol and are dependent on the version of both the
Horizon Client and Horizon Agent.

Virtual Channel and Side Channel Security

This topic describes the security features of virtual channels and side channels which run over Horizon session
connections.

Virtual Channel Security

Virtual channels run over the session connection that is established by the remote protocol and rely on security
offered by the protocol. The communication over these supported protocols is highly secure and based on industry-
recommended security practices. The endpoints negotiate the actual session encryption algorithm that is used by
the selected protocol.

In addition, you can increase the security of virtual channels by configuring a list of allowed channels. This
configuration allows only the channels in the list to be opened by legitimate requests and prevents all other
channels from being opened. To create the allow list, add the channels as registry entries to the .reg file included
with the SDK. For more information, see Omnissa Knowledge Base (KB) article 84156.

For detailed information about the types of security offered by the supported protocols, see Understanding Client
Connections.

To configure the cipher suites and protocols used by the client, follow the client-specific procedure described in
Configuring Security Protocols and Cipher Suites for Specific Client Types.

For information about the security features of Horizon Cloud Service next-gen, see the Horizon Cloud Service —
next-gen Security Overview technical article.

https://kb.omnissa.com/s/article/84156
https://docs.omnissa.com/bundle/HorizonOverviewDeployment/page/UnderstandingClientConnections.html
https://docs.omnissa.com/bundle/HorizonOverviewDeployment/page/UnderstandingClientConnections.html
https://docs.omnissa.com/bundle/Horizon-Security/page/ConfiguringSecurityProtocolsandCipherSuitesforSpecificClientTypes.html
https://techzone.omnissa.com/resource/horizon-cloud-service-%E2%80%93-next-gen-security-overview
https://techzone.omnissa.com/resource/horizon-cloud-service-%E2%80%93-next-gen-security-overview

Side Channel Security

Side channels rely on the Advanced Encryption Standard (AES) 128-cipher algorithm in Cipher Block Chaining (CBC)
mode. The algorithm uses an explicit initialization Vector (1V) as a confidentiality mechanism within the context of
the IPsec. The random number is generated on the remote desktop and exchanged through the main virtual
channel which is secured by the protocol’s security layer. This exchange does not require any negotiation for an
SSL/TLS handshake. The application using the side channel must opt in to use the encryption.

The following API methods provide the implementation details for the encryption:

m vl.CreateChannelObject(): Use config flags to negotiate the encryption support between sender and
receiver.

®m v3.GetObjectOptions(): Use this function to verify whether both the sender and receiver support
encryption.

m v3.CreateContext(): Use this function to create the encryption context before send and invoke events.

Installation

To use the Horizon Session Enhancement API, you must use vdpService.dll, which is installed by the Horizon agent
software.

Remote Desktop

The file vdpService.dll must exist on the remote desktop. When you install the Horizon agent software, this file is
automatically installed on the remote desktop. For the location of the installation directory, see the applicable
registry:

e Agent versions 2412 and later - HKLM\Software\Omnissa\Horizon\RemoteExperienceAgent\InstallPath
e Agent versions 2406 and earlier - HKLM\Software***** |nc.***** VDM\RemoteExperienceAgent\InstallPath
The 64-bit version of vdpService.dll is installed under x64 in the same directory.

To load vdpService.dll, use the code in vdpService_import.cpp which is included with the SDK.

Client

The file vdpService.dll (.so, .dylib) already exists on the client system and is loaded by Horizon Client. Your plugin
must not load vdpService.dll, because loading extra copies can cause problems.

Windows Client
Register the vdpService plugin to the applicable registry location:

e Client versions 2412 and later - HKLM\Software\Omnissa\Horizon\VDPService\Plugins

e Client versions 2406 and earlier - HKLM\Software***** |nc ***** yDPService\Plugins

e Use the function VDPService_RegisterPlugin which is included in the SDK to register your plugin. There is
also a matching function to unregister the plugin VDPService_UnRegisterPlugin (see helpers.cpp/.h).

Linux Client
Copy the vdpService plugin to the applicable location:

e Client versions 2412 and later - /lib/.omnissa/vdpService or ~/.omnissa/vdpService
e Client versions 2406 and earlier - /lib/.***** /ydpService or ~/.***** /ydpService
e The Makefile that comes with the samples shows how to copy the .so library to the correct folder

Make sure that the plug-ins have the execute permission.

Mac Client
Copy the vdpService plugin to the applicable location:

e Client versions 2412 and later - /Library/.omnissa/vdpService or ~/.omnissa/vdpService
e Client versions 2406 and earlier - /Library/.***** /ydpService or ~/.***** /ydpService
e The Makefile that comes with the samples shows how to copy the .dylib library to the correct folder

Make sure that the plug-ins have the execute permission. The plugin must be signed with your Apple developer's
ID certificate unless SIP is disabled.

Sample Code

The Horizon Session Enhancement SDK includes a directory called samples that contains examples of how to use
the API.

Data Types and Error Codes

The Horizon Session Enhancement APl has three groups of data types. The API also specifies error codes for

various error conditions.

Data Types

The Horizon Session Enhancement APl uses the data types VDP Service, VDP RPC, and Overlay.

VDP Service Data Types
Table 2-1. VDPService Data Types

Data Type Description

VDPService_ConnectionState This enum indicates the current state of the remote connection.
VDPService_ChannelState This enum indicates the current state of a particular channel.
VDPService_SessionType This enum indicates the type of the current session (Blast Extreme or PColP).

VDP RPC Data Types
The VDP RPC data types are for use with the VDP RPC API.

Table 2-2. VDP RPC Data Types

Data Type Description
VDP_RPC_VARENUM This enum indicates the type of data that is stored in a VDP_RPC_VARIANT.
VDP_RPC_BLOB Stores data that does not fit in any predefined VDP_RPC_VARENUM. Because VDP Service sends the

data as is, it cannot protect against changes in byte endianness or structure alignment and
padding. Use care to avoid errors.

VDP_RPC_VARIANT Wraps the data for the RPC calls. Any data that is sent with the Invoke call must be contained in a
VDP_RPC_VARIANT.

VDPRPC_ObjectState Represents the state of an object. Only objects in the VDP_RPC_OBJ_CONNECTED state can be used
in the Invoke call.

VDPRPC_ObjectConfigurationFlag s Used to configure channel objects with
ChannelObjectinterface.vl.CreateChannelObject.

VDPRPC_ChannelContextOps Used to configure the channel contexts with ChannelContextinterface.v2.SetOps.

VDPRPC_SideChannelType Virtual side channel or TCP side channel.

VDPOverlay Data Types

The VDPOverlay data types are for use with the Overlay API. They are found in vdpOverlay.h.

This first table provides the VDP Overlay Guest data types. The second table provides the VDP Overlay Client data
types.

Table 2-3. VDPOverlayGuest Data Types

Data Type Description

VDPOverlay_Windowld An identifier that represents a remote or guest-side overlay. In earlier versions of the API, the
windowld and the HWND were the same but in the current version they can be different.

VDPOverlay_HWND A representation of the native OS window.

VDPOverlay_UserArgs Parameter that is passed through to the callback on the remote side.

VDPOverlay_LayoutMode This enum represents all of the different layouts that the VDP Overlay APl supports.
VDPOverlay_Error Returned by many of the Overlay functions. Indicates the results that may occur.
VDP_OVERLAY_INFO_STR_MAX_LEN The maximum length, including the NULL terminator, of an information string rendered on top of

an overlay. The value of this constant is set to 1024 bytes.

Table 2-4. VDPOverlayClient Data Types

Data Type Description
VDPOverlayClient_Contextld Returned from VDPOverlayClient.v1.Init(). This ID is used in every call to the Client API.
VDPOverlay_Overlayld An identifier that represents a local or client-side overlay that doesn't map to a window in the

remote desktop. An Overlayld can be used in any function that takes a Windowld but a
Windowld can not be used as an Overlayld.
VDPOverlayClient_OverlayInfo This structure is used in the call to VDPOverlayClient.v1/v2.GetInfo().

In V1 the first member of VDPOverlayClient_Overlaylnfo was cbSize which was set by the caller to
determine the version of the struct. But doing that was not backward compatible. For example,
a program written to V2 would return an error if it called Getinfo() because the size wouldn't be
set correctly.

Starting with V2 the first member of VDPOverlayClient_Overlayinfo is a version and is set by
GetlInfo() to the version of the function that filled the structure. For backward compatibility
when calling v1.GetInfo() the caller must set version = VDP_OVERLAY_INFO_V1_SIZE before calling
v1.GetInfo().

VDPOverlayClient_YUVImageData This structure is used in the call to VDPOverlayClient.v2.Update() when the image format is a
YUV format.

Member Description

plmage[3] | An array with a pointer to the pixels for each plane of the image.
. BGRX - image[0] = BGRX plane, image[1] = NULL, image[2] = NULL
. YUV -image[0] =Y plane, image[1] = U plane, image[2] =V plane

pitch[3] An array with the # of bytes, per row, for each plane of the image.

Data Type Description

VDPOverlayClient_InfoStringProperties This structure is used in the calls to
VDPOverlayClient.v4.GetInfoStringProperties() and
VDPOverlayClient.v4.SetInfoStringProperties().

V1 through V3 of VDPOverlayClient_Interface do not support this structure.

The members of this structure are defined as follows.

Member Description

véd.enabled | A Boolean that activates/deactivates the information string.
v4.fgColor An uint32 specifying the foreground/text color used to render the
information string. 0 specifies the default foreground color.
v4.bgColor | An uint32 specifying the background color used to render the
information string. 0 specifies the default background color.
v4.xBox An int32 specifying the horizontal distance between the

background and the edge of the overlay.

Positive numbers position the background on the left. Negative
numbers position the background on the right. 0 uses the default
margin.

v4.yBox An int32 specifying the vertical distance between the background

and the edge of the overlay.

Positive numbers position the background on the top. Negative
numbers position the background on the bottom. 0 uses the
default margin.

v4.wBox An int32 defining the width of the background.

Positive numbers denote the maximum width of the background.
The text will be scaled to fit in this width using the
LETTERBOX_SHRINK_ONLY layout mode.

Negative numbers denote an absolute width for the background.
The text will be scaled to fit in this width using the LETTERBOX

layout mode.

0 sizes the background to the width of the text.

v4.hBox An int32 defining the height of the background.

Positive numbers denote the maximum height of the background.
The text will be scaled to fit in this height using the
LETTERBOX_SHRINK_ONLY layout mode.

Negative numbers denote an absolute height for the background.
The text will be scaled to fit in this height using the LETTERBOX
layout mode.

0 sizes the background to the height of the text.

VDPOverlay_LayoutMode This enum represents all of the different layouts that the VDP Overlay API supports.
VDPOverlay_Error Returned by many of the Overlay functions. Indicates the results that may occur.
VDPOverlay_ImageFormat This enum defines the pixel format of an image passed to

VDPOverlayClient_Interface.v2.Update(). Note that
VDPOverlayClient_Interface.vl.Update() always assumes VDP_OVERLAY_BGRX formatted images.

VDPScreenCapture Data Types

The VDPScreenCapture data types are for use with the Screen Capture API. They are found in vdpScreenCapture.h.

Table 2-5. VDPScreenCapture Data Types

Data Type

VDPScreenCapture_Contextld

Description

Returned from VDScreenCapture.viinit(). This ID is used in every call to the Screen
Capture API.

VDP_SCREEN_CAPTURE_ID_NONE is a value that denotes an invalid
VDPScreenCapture_Contextld.

VDPScreenCapture_Rect

This is used to hold a rectangle.

VDPScreenCapture_HWND

Type used by the ReadBackWindow interface to hold a remote window handle.

VDPScreenCapture_ReadBackWindowHandle

Returned from VDPScreenCapture.v3/v4.ReadBackWindowBegin(). This ID is used
when calling ReadBackWindow functions.
VDP_SCREEN_CAPTURE_READBACK_WINDOW_HANDLE_NONE is a value that
denotes an invalid VDPScreenCapture_ReadBackWindowHandle.

VDPScreenCapture_ImageHandle

Returned from VDPScreenCapture.v2.ReadBackScreen() or v3.ReadBackWindow() to
refer to the image returned.

VDP_SCREEN_CAPTURE_IMAGE_HANDLE_NONE is a value that denotes an invalid
VDPScreenCapture_ImageHandle.

VDPScreenCapture_ReadBackRequestld

Returned from VDPScreenCapture.v4.RegisterForReadBackRequests().

VDP_SCREEN_CAPTURE_READBACK_REQUEST_ID_NONE is a value that denotes an
invalid VDPScreenCapture_ReadBackRequestld.

VDPScreenCapture_ImageFormat

Used to denote the format of an image returned from VDPScreenCapture interface.

Member Description

VDP_SCREEN_CAPTURE_BGRX 32-bit RGB image. The high byte is ignored

VDP_SCREEN_CAPTURE_YUVI420 | YUV 1420 image

VDPScreenCapture_OverlayOptions

Determines how overlays are handled during a screen capture

Member Description

VDP_SCREEN_CAPTURE_OVERLA

¥_INCLUDE_ALL The image includes all overlays

VDP_SCREEN_CAPTURE_OVERLA

The image excludes all overlays
Y_EXCLUDE_ALL

The image will exclude overlays marked
with
VDP_OVERLAY_UPDATE_FLAG_EXCLUDE_F

VDP_SCREEN_CAPTURE_OVERLA
Y_EXCLUDE_FLAGGED

ROM_READ_BACK in the call to
VDPOverlayClient_Interface.v2.Update()

VDP_SCREEN_CAPTURE_TOPOLOGY_CHANGED flags

Flags that can be passed to topology changed callback registered via
VDPScreenCapture_Sink.v1.0nTopologyChanged(). One or more of these flags will be set when the function is
called.

Flag Description

VDP_SCREEN_CAPTURE_LOCAL_TOPOLOGY_CHANGED Denotes that the local topology has changed.

VDP_SCREEN_CAPTURE_REMOTE_TOPOLOGY_CHANGED Denotes that the remote topology has changed.

VDP_SCREEN_CAPTURE_HOST_WINDOWID_CHANGED Denotes that the OS window ID of the Horizon Client window has changed.

VDP_SCREEN_CAPTURE_READBACK_CAPS flags
Flags returned from VDPScreenCapture.v4.GetReadBackCapabilities().

Flag Description

VDP_SCREEN_CAPTURE_READBACK_CAPS_READBACK_SCREEN Set if v2.ReadBackScreen() is available.

VDP_SCREEN_CAPTURE_READBACK_CAPS_READBACK_WINDOW Set if v3.ReadBackWindow() is available.

VDP_SCREEN_CAPTURE_READBACK_CAPS_VISIBLE_AREA_ONLY Set if v3.ReadBackWindow() w/ VISIBLE_AREA_ONLY is available.

VDP_SCREEN_CAPTURE_READBACK_CAPS_AUXILIARY_WINDOWS Set if v4.ReadBackWindowBegin() w/ auxilary windows is available.

VDP_SCREEN_CAPTURE_READBACK_BEGIN flags
Flags that can be passed to VDPScreenCapture_Interface.v3/v4.ReadBackWindowBegin().

Flag Description

VDP_SCREEN_CAPTURE_READBACK_BEGIN_VISIBLE_AREA_ONLY Clips the non-visible area of the window. The area of the window

that is obscured by other windows is also obscured in the image
returned.

VDP_SCREEN_CAPTURE_READBACK_BEGIN_LOCATION_CHANGED Set if you want to be notified when the location of the readback

window changes. Only a single event is queued at a time so the
location tracking is closer to real time but you get fewer location
points.

VDP_SCREEN_CAPTURE_READBACK_BEGIN_LOCATION_CHANGED_EX Set if you want to be notified when the location of the readback

window changes. Every location update is queued as a separate
event. This can generate a lot of events but you get a more accurate
movement path.

VDP_SCREEN_CAPTURE_READBACK_BEGIN_IMAGE_CHANGED Set if you want to be notified when the image of the readback

window changes.

VDP_SCREEN_CAPTURE_READBACK flags

Flags that can be used in VDPScreenCapture_ReadBackParameters.v3.flags.

Flag

Description

VDP_SCREEN_CAPTURE_READBACK_MAINTAIN_ASPECT_RATIO Maintain the aspect ratio when scaling.

VDP_SCREEN_CAPTURE_READBACK_SHRINK_ONLY

VDPScreenCapture_ReadBackParameters.v2.scaledWidth/Height now
represents a maximum size; i.e. scaling will only happen if the size of the
image is larger than given scaled size.

VDP_SCREEN_CAPTURE_READBACK_RETURN_TEST_IMAGE Returns a solid color test image.

VDP_SCREEN_CAPTURE_READBACK_WRITE_IMAGE_FILE Writes the returned image to a file. This allows you to verify what the APl is

returning to your application. This is helpful when tracking down problems
in the rendering pipeline. The image file is written as follows:

. ReadBackScreen -> %TEMP%\ReadBackScreen.png

° ReadBackWindow -> %TEMP%\ReadBackWindow-<ID>.png

VDPScreenCapture_ReadBackParameters
This structure is used in the call to VDPScreenCapture_Interface.v2.ReadBackScreen() and

VDPScreenCapture_Interface.v3.ReadBackWindow().

Flag

uint32 version

VMRect v2.srcRect

VDPScreenCapture_ImageFormat v2.format

Description

You must set the version number so that the APl knows how big the structure is:
. VDP_SCREEN_CAPTURE_READ_BACK_PARAMETERS_V2
e VDP_SCREEN_CAPTURE_READ_BACK_PARAMETERS_V3

When used with v2.ReadBackScreen(), the area within the remote desktop, in remote
topology coordinates, to read. The area may not cross screen boundaries. Set srcRect
to all Os to read the entire first screen.

When used with v3.ReadBackWindow(), the area within the remote window, in
remote window coordinates, to read. e.g. X,Y == 0,0 is the top left corner of the
remote window. Set srcRect to all Os to read the entire window.

The format of the returned image.

VDPScreenCapture_OverlayOptions
v2.overlayOptions

bool v2.includeCursor

int32 v2.scaledWidth
int32 v2.scaledHeight

int32 v2.alignment

uint32 v3.flags

VDPScreenCapture_Imagelnfo

Determine which overlays are included in the read back. See the flags defined in the
VDPScreenCapture_OverlayOptions enum for more information

Note: certain overlays are always excluded from the read back. See
VDPOverlayClient_Interface.v3.SetRemoteWindow() for information.

Determines if the cursor is included in the read back.

The scaled width/height of the returned image. If either value is 0 no scaling takes
places.

The alignment requirements, in bytes, of the returned image. The pointer to the start
of each scan line will be aligned to be a multiple of this value. Pass 0 for a default /
don't care value. The graphics library used by the Horizon Client must support the
value.

See VDP_SCREEN_CAPTURE_READBACK flags definitions for more information.

This structure is used in the call to VDPScreenCapture_Interface.v2.ReadBackScreen().

Flag

uint32 version

VDPScreenCapture_ImageHandle v2.himage

void* v2.image[3]

int32 v2.pitch[3]

int32 v2.width

int32 v2.height

VDPScreenCapture_ImageFormat v2.format

VMRect v4.location

Description

You must set the version number so that the APl knows how big the structure is:
e VDP_SCREEN_CAPTURE_IMAGE_INFO_V2
. VDP_SCREEN_CAPTURE_IMAGE_INFO_V4

A unique handle which is passed to VDPScreenCapture.v2.ReadBackRelease() to
release resources allocated by the image. Use the pointers in the v2.image array to
access the pixels.

An array with a pointer to the pixels for each plane of the image.
. BGRX - image[0] = BGRX plane, image[1] = NULL, image[2] = NULL
. YUV -image[0] =Y plane, image[1] = U plane, image[2] =V plane

An array with the # of bytes, per row, for each plane of the image.

The width/height of the image.

The format of the image

The location on the remote desktop, in remote topology coordinates, used to read
back the image.

VDPScreenCapture_ReadBackWindowInfo

This structure is used in the call to VDPScreenCapture_Interface.v4.GetReadBackWindowInfo().

Flag

Description

uint32 version

VDPScreenCapture_ReadBackWindowHandle
v4.hReadBackWindow

VDPScreenCapture_RemoteError v4.state

VDPScreenCapture_ HWND v4.hWnd
uint32 v4.processld
uint32 v4.flags

const VDPScreenCapture_ HWND* v4.hWndAux
const uint32* v4.processldAux
int32 v4.auxWindowCount

VMRect v4.location

You must set the version number so that the APl knows how big the structure is. The
version number will be updated to reflect what information the API returned:
. VDP_SCREEN_CAPTURE_READBACK_WINDOW_INFO_V4

The readback window handle.

The current state of the readback window.

The parameters passed to v3/v4.ReadBackWindowBegin().

The auxiliary window handles and process IDs passed to v4.ReadBackWindowBegin().

The location on the remote desktop, in remote topology coordinates, used to read
back the image.

VDPScreenCapture_ReadBackRequestParams
This structure is used in the call to VDPScreenCapture_Interface.v4.ReadBackRequestUpdate().

Flag

uint32 version

void* v4.image[3]

int32 v4.pitch[3]

int32 v4.width

int32 v4.height

VDPOverlay_ImageFormat v4.format

VDPOverlay_LayoutMode v4.layoutMode

uint32 v4.layer

int32 v4.clipRgnNRects

VDPScreenCapture_Rect* v4.clipRgnRects

VMRect v4.dstRect

Description

You must set the version number so that the APl knows how big the structure is:
e VDP_SCREEN_CAPTURE_READBACK_REQUEST_INFO_V4

An array with a pointer to the pixels for each plane of the image.
. BGRX - image[0] = BGRX plane, image[1] = NULL, image[2] = NULL
L] YUV -image[0] =Y plane, image[1] = U plane, image[2] =V plane

An array with the # of bytes, per row, for each plane of the image.

The width/height of the image.

The format of the image. VDPScreenCapture uses an overlay to display the image so
the format must be one supported by the VDPOverlay API. See
VDPOverlay_ImageFormat in vdpOverlay.h for more information.

This is the layout mode of the overlay that defines how the image is scaled to fit into
the destination rectangle. See VDPOverlay_LayoutMode in vdpOverlay.h for more
information.

This is the layer of the overlay. When there are multiple overlays the one with the
higher layer is on top. See VDPOverlay_SetLayer() in vdpOverlay.h for more
information.

An array of rectangles, in image coordinates, that define the clip region for the image.
e.g. X,Y == 0,0 is the top left corner of the image. Pass O/NULL if there isn't a clip
region.

The area within the remote desktop, in remote topology coordinates, to place the
image. e.g. X,Y == 0,0 is the top left corner of the remote desktop.

uint32 v4.imageFlags

Error Codes

Flags used when updating the image. See VDP_OVERLAY_UPDATE_FLAG in

vdpOverlay.h for information.

The Horizon Session Enhancement API specifies codes to indicate errors.

RPC OnAbort Reason Error Codes

If the call to the VDPRPC_ChannelObjectinterface.v1.0nlnvoke() method fails due to a Horizon Session Enhancement
error, the supplied OnAbort method is called and the last parameter to this method contains one of the following

error codes.
Table 2-5. RPC OnAbort Reason Error Codes
Code

VDP_RPC_E_APARTMENT_UNINITIALIZED

VDP_RPC_E_APARTMENT_THREAD

VDP_RPC_E_OBJECT_NOT_CONNECTED

VDP_RPC_E_PARAMETER

VDP_RPC_E_MEMORY

VDPOverlay_Error Codes

Description

This error occurs if the Oninvoke call is made on a thread that is not initialized to be
used with the Horizon Session Management API.

This error occurs if the Oninvoke call involves an object that was not created on the
calling thread and the object is not configured to allow Oninvoke calls on different
threads.

This error occurs if the object handle that is used for the Oninvoke call points to an
object that is not connected. This error indicates that the peer object on the remote
side is not yet created.

One of the required parameters that is passed to the Oninvoke call is invalid.

The system fails to allocate the required memory to send the request.

If an error occurs, many of the methods that are defined in vdpOverlay.h return one of the following errors.

Table 2-6. VDPOverlay_Error Codes

Code

VDP_OVERLAY_ERROR_SUCCESS

VDP_OVERLAY_ERROR_NOT_INITIALIZED

VDP_OVERLAY_ERROR_ALREADY_INITIALI
ZED

VDP_OVERLAY_ERROR_INVALID_PARAME
TER

Description

No error. The call is successful.

The call fails because the VDP Overlay components are not properly loaded in the
Horizon environment.

This error is only returned from the VDPOverlayGuest_Interface.v1.Init() call. The guest
Overlay system is already initialized.

One of the required parameters that is passed to the call is invalid.

VDP_OVERLAY_ERROR_ALLOCATION_ER
ROR

VDP_OVERLAY_ERROR_NO_MORE_OVER
LAYS

VDP_OVERLAY_ERROR_OVERLAY_REJEC
TED

VDP_OVERLAY_ERROR_OVERLAY_NOT_R
EADY

VDP_OVERLAY_ERROR_WINDOW_NOT_REGISTERED

The system fails to allocate the required memory or system resource to handle the
call.

This error results from a failed attempt to register a window and may be received
in the VDPOverlayGuest_Sink.v1.0nOverlayCreateError() or
VDPOverlayClient.v2.CreateOverlay() callback. This error may be due to a client-side
error. It can also occur if the call tries to register a window that is already
registered with a different plug-in.

This error results from a failed attempt to register a window and is returned in the
reason field of the

VDPOverlayGuest_Sink.v1.0nOverlayRejected() callback. This error occurs if the client
does not accept the overlay registration request.

This error occurs when either

VDPOverlayGuest_Interface.vl.EnableOverlay or
VDPOverlayGuest_|Interface.v1.DisableOverlay fails. It indicates that the registered
window is not ready, that is, the

VDPOverlayGuest_Sink.v1.0nOverlayReady() callback is not yet received.

The window ID that is specified in the call is not yet registered. Many Overlay
methods may return this error.

VDP_OVERLAY_ERROR_WINDOW_ALREADY_REGISTERED The window is already registered. This error can be returned from the

VDP_OVERLAY_ERROR_NOT_LOCAL_OVERLAY
VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR

VDP_OVERLAY_ERROR_NOT_SUPPORTED_BY_CLIENT

VDPScreenCapture_Error Codes

VDPOverlayGuest_Interface.v1.RegisterWindow() method.

The overlayld of a guest-side overlay was passed to a function that can only be called
on a local overlay.

There is an error with a low level library. This error code should be treated as
similar to INVALID_PARAMETER.

The version of the client-side VDP Overlay API does support the feature.

If an error occurs, many of the methods that are defined in vdpScreenCapture.h return one of the following errors.

Table 2-7. VDPScreenCapture_Error Codes

Code

VDP_SCREEN_CAPTURE_ERROR_SUCCESS

VDP_SCREEN_CAPTURE_ERROR_HOST_NOT_READY

VDP_SCREEN_CAPTURE_ERROR_HOST_VERSION_ERROR

VDP_SCREEN_CAPTURE_ERROR_HOST_ERROR

Description

No error. The call is successful.

The call failed because the Screen Capture APl is not done initializing.

This error is only if the version of vdpService.dll is not matched with the
version of the Horizon client. This can only happen if the version of
vdpService.dll being used is not the version that shipped with Horizon.

There is an error with a low level library. This error code should be
treated as similar to INVALID_PARAMETER.

VDP_SCREEN_CAPTURE_ERROR_INVALID_PARAMETER

VDP_SCREEN_CAPTURE_ERROR_ALLOCATION_ERROR

VDP_SCREEN_CAPTURE_ERROR_NOT_ALLOWED_IN_APP_MODE

One of the parameters passed into a function is not valid.

The system fails to allocate the required memory or system resource to
handle the call.

Many of the function in the Screen Capture API can not be used when
the Horizon client is remoting a single application. They can only be
used when remoting the entire desktop.

VDP_SCREEN_CAPTURE_ERROR_READBACK_WINDOW_NOT_READY The ReadBackWindow interface must initialize with the Horizon Agent

on the remote desktop before it is ready.

VDP_SCREEN_CAPTURE_ERROR_READBACK_WINDOW_DESTROYED The ReadBackWindow interface is tracking a window that no longer

VDP_SCREEN_CAPTURE_ERROR_UNSUPPORTED

VDP_SCREEN_CAPTURE_ERROR_UNSUPPORTED_PROTOCOL

VDP_SCREEN_CAPTURE_ERROR_UNSUPPORTED_AGENT

VDP_SCREEN_CAPTURE_ERROR_UNSUPPORTED_OPTION

VDPScreenCapture_RemoteError Codes

exists on the remote desktop.

The function that you are trying to use is not supported.

The function is not supported by the protocol. The ScreenCapture and
ReadBackWindow interfaces are only supported by the Blast protocol.

The function is not supported by the Horizon Agent on the remote
desktop. This is usually because the version of the Horizon Agent does
not support the ReadBackWindow interface.

When calling v3.ReadBackWindow(), one of the options in the flags
parameter is not supported by the Horizon Client.

List of all possible error codes for VDPScreenCapture_Sink.v3.0nReadBackWindowRemoteError().

Table 2-8. VDPScreenCapture_RemoteError Codes

Code

VDP_SCREEN_CAPTURE_REMOTE_ERROR_WINDOW_READY

Description

No error. The remote window tracking is ready to return images.

VDP_SCREEN_CAPTURE_REMOTE_ERROR_WINDOW_NOT_READY The remote window tracking failed because the Horizon Agent isn't ready

to return images.

VDP_SCREEN_CAPTURE_REMOTE_ERROR_WINDOW_DESTROYED The remote window tracking failed because the remote window was

VDP_SCREEN_CAPTURE_REMOTE_ERROR_TRACKING_FULL

VDP_SCREEN_CAPTURE_REMOTE_ERROR_INVALID_WINDOW

VDP_SCREEN_CAPTURE_REMOTE_ERROR_INVALID_PID

destroyed.

The remote window tracking failed because the Horizon Agent is tracking
too many windows.

The remote window tracking failed because the requested window does
not exist.

The remote window tracking failed because the requested window does
not belong to process specified.

VDP_SCREEN_CAPTURE_REMOTE_ERROR_UNSUPPORTED The remote window tracking failed because the Horizon Agent does not
support a requested capability.

VDP_SCREEN_CAPTURE_REMOTE_ERROR_CAPTURE_FAILED The remote window tracking failed because the window on the remote
desktop could not be captured.

Channel Interaction Functions

The Horizon Session Enhancement SDK contains the header file vdpService_interfaces.h. This file declares two
structures of function pointers, VDPService_Channellnterface and VDPService_ObserverInterface.

You can use the VDPService_Channellnterface APIs to interact with the remote connection or channel. With
VDPService_ObserverInterface, two components within the same process can communicate with each other.

VDPService_Channelinterface consists of the following functions:

e vl.Connect

e vl.Disconnect

e vl.GetChannelState

e vl.GetConnectionState

e vl.Poll

e vl.RegisterChannelNotifySink
e vlThreadlnitialize

e vl1ThreadUninitialize

e vl.UnregisterChannelNotifySink
e v2.GetSessionType

e v2.SwitchToStreamdataMode
e v3.Poll

VDPService_Observerinterface consists of the following functions:

e vl.Broadcast
e vl.RegisterObserver
e vl.UnregisterObserver

This chapter includes the following topics:

e vl.Broadcast

e vl.Connect

e vl.Disconnect

e vl.GetChannelState

e vl.GetConnectionState

e vl1.Poll

e vl.RegisterChannelNotifySink
e vl.RegisterObserver

e vl Threadlnitialize

e vlThreadUninitialize

e vl.UnregisterChannelNotifySink
e vl.UnregisterObserver

e v2.GetSessionType

e v2.SwitchToStreamDataMode
e v3.Poll

v1.Broadcast

Broadcasts a given name's message to all observers. Basically, it will call all registered callbacks.

This function is a member of VDPService_ObserverInterface.

Method Signature

BOOL (*v1.Broadcast)(const char *name, const void *cookie, const void *data);

Parameters

Parameter Description

name The name of the message.
cookie User-defined data. It can be as simple as request ID.
data

Message data.

Return Values

Value Description
TRUE Success

FALSE Failure

vl.Connect

Starts the channel connection. You must call vi.Connect on both the application and the plug-in side, though the
order does not matter. Call this method prior to exiting the VDPService_PluginCreatelnstance callback.

This function is a member of VDPService_Channelinterface.

Method Signature

Bool (*v1.Connect)(void);

Parameters

None

Return Values

Value Description

TRUE Call succeeded.

FALSE Call failed.

v1.Disconnect

Closes the underlying channel connection. You can call this method on either the plug-in or the application side.

This function is a member of VDPService_Channelinterface.

Method Signature

Bool (*v1.Disconnect)(void);

Parameters

None

Return Values

Value Description
TRUE Call succeeded.

FALSE Call failed.

v1l.GetChannelState

Queries the current state of the channel connection between application and plug-in instances.

The channel to query is determined by the ID of the calling thread.

This function is a member of VDPService_Channelinterface.

Method Signature

VDPService_ChannelState (*v1.GetChannelState)(void);

Parameters

None

Return Values

Value Description
VDP_SERVICE_CHAN_UNINITIALIZED The channel for this thread could not be found.
VDP_SERVICE_CHAN_DISCONNECTED The channel is inactive.

VDP_SERVICE_CHAN_PENDING The channel is open on the calling end, but not yet connected.

VDP_SERVICE_CHAN_CONNECTED The channel is active.

v1.GetConnectionState

Used to query the state of the underlying user session. Note that depending on when a sink was registered, you
might not receive a callback noting that the connection state has changed. Use this method to determine the state
of the connection at any time.

This function is a member of VDPService_Channelinterface.

Method Signature

VDPService_ConnectionState (*v1.GetConnectionState)(void);

Parameters

None

Return Values

Value Description

VDP_SERVICE_CONN_UNINITIALIZED The user session cannot be found.
VDP_SERVICE_CONN_DISCONNECTED The user session is currently inactive.
VDP_SERVICE_CONN_PENDING The user session is not connected, but active on the calling end.
VDP_SERVICE_CONN_CONNECTED The user session is active.

v1.Poll

Allows the Horizon Session Enhancement system to process any waiting events. This call is required on any thread
that the v1.Threadinitialize call was made to so that the Horizon Session Enhancement system can function. If there
are no waiting events, this call will just return.

Note All waiting events will be processed, so control may not be returned to you for some time.

Most events will cause calls to registered sinks. Callbacks might be fired.

On Windows, if the thread uses its own message loop, using the method is not required.

This function is a member of VDPService_Channelinterface.

Method Signature

void (*v1.Poll)(void);

Parameters

None

Return Values

None

v1.RegisterChannelNotifySink

Registers the given VDPService_ChannelNotifySink with the channel associated with the calling thread. You may
register any number of sinks, and each will receive a callback when an event occurs.

The sinkHandle parameter will be set to the handle assigned to the given sink. This is used to unregister the sink
with the channel.

This function is a member of VDPService_Channelinterface.

Method Signature

Bool (*v1.RegisterChannelNotifySink)(const VDPService_ChannelNotifySink *sink, void *userData, uint32 *sinkHandle);

Parameters

Parameter Description

sink The sink to register with the channel.

userData Data that will be passed into any callbacks to this sink. Can be NULL.

sinkHandle Set to the handle assigned to this sink.

Return Values

Value Description
TRUE The sink was successfully registered.

FALSE Sink registration failed.

v1.RegisterObserver

Registers an observer with the given name and callbacks.

This function is a member of VDPService_ObserverInterface.

Method Signature

VDPService_Observerld (*v1.RegisterObserver)(const char *name, void *context, VdpServiceObserverCallback cb);

Parameters

Parameter Description

name The name of message caller is interested.
context Context pointer caller want to passed in callback.
cb Callback function when given name message is available.

Return Values

Value Description

uint32 The ID of the registered observer or 0 (failed).

vl.Threadlnitialize

Initializes the thread for use with the Horizon Session Enhancement APls. This method must be called on any
thread that is not the main thread. Do not call this method on the thread that received the
VDPService_PluginCreatelnstance callback or that the VDPService_Serverlinit call was made from.

This function is a member of VDPService_Channelinterface.

Method Signature

Bool (*v1.Threadlnitialize)(void *channelHandle, uint32 unusedFlag);

Parameters

Parameter Description

Represents the channel instance that this plug-in instance is running on. The channel handle is returned from the

channelHandle]) .)
VDPService_Serverlnit call or passed from the VDPService_PluginCreatelnstance method.

unusedFlag Currently unused.

Return Values

Value Description
TRUE The thread was successfully initialized.

FALSE Thread initialization failed.

vl.ThreadUninitialize

Uninitializes the calling thread, freeing all resources associated with Horizon Session

Enhancement. No API calls must be made from this thread after this call. Only call this method on threads that had
vl.Threadlnitialize invoked.

This function is a member of VDPService_Channelinterface.

Method Signature

Bool (*v1.ThreadUninitialize)(void);

Parameters

None

Return Values

Value Description
TRUE The thread was successfully uninitialized.

FALSE Thread uninitialization failed.

v1l.UnregisterChannelNotifySink

Removes the sink associated with the given handle from the list of sinks that the channel associated with the
calling thread will notify of Horizon Session Enhancement events.

This function is a member of VDPService_Channelinterface.

Method Signature

(*v1.UnregisterChannelNotifySink)(uint32 sinkHandle);

Parameters
Parameter Description
sinkHandle The handle returned from v1.RegisterChannelNotifySink of the sink to be unregistered.

Return Values

Value Description
TRUE The sink that matches the given handle was successfully unregistered.

FALSE The sink is still registered with the handle.

vl.UnregisterObserver

Unregisters an observer with the given name and callbacks.

This function is a member of VDPService_ObserverInterface.

Method Signature

BOOL (*v1.UnregisterObserver)(VDPService_Observerld id);

Parameters

Parameter Description

id The observer id returned from vi.RegisterObserver.

Return Values

Value Description
TRUE Unregister succeeded.

FALSE Unregister failed.

v2.GetSessionType

Gets the current virtual channel type.

This function is a member of VDPService_Channelinterface.

Method Signature

VDPService_SessionType (*v2.GetSessionType)(void);

Parameters

None

Return Values

Value Description

VDP_SERVICE_NONE_SESSION Session type not determined yet.
VDP_SERVICE_PCOIP_SESSION vdpservice is running in a PColP session.
VDP_SERVICE_BLAST_SESSION vdpservice is running in a Blast Extreme session.

v2.SwitchToStreamDataMode

Switches vdpservice to TCP socket mode. This is an agent-only feature. In this mode, user can use output socket
handle to send and receive data via a TCP socket handler. All internal vdpservice threads are terminated in order to

save resources. Only VDPRPC_StreamDatalnterface and VDPService_ServerExit APls can be called for the data processing
and final clean-up.

This function is a member of VDPService_Channelinterface.

Method Signature

BOOL (*v2.SwitchToStreamDataMode)(const char *tcpObjName, void *channelHandle, int *fd);

Parameters

Parameter Description

tcpObjName The name of the object which requested the TCP side channel.

channelHandle Represents the channel interface that this plug-in is running on. The channelHandle is returned from the
Vdpservice_Serverlnit call or passed from the VDPService_PluginCreatelnstance method.

fd Output TCP socket handle.

Return Values

Value Description
TRUE Switching to stream data mode succeeded.

FALSE Switching to stream data mode failed.

v3.Poll

Allows the Horizon Session Enhancement system to process any waiting events. This call is required on any thread
that the v1.ThreadInitialize call was made to so that the Horizon Session Enhancement system can function. If there
are no waiting events, this call will be blocked until the next event or timeout is reached.

Note All waiting events will be processed, so control may not be returned to you for some time.

Most events will cause calls to registered sinks. Callbacks might be fired.

On Windows, if the thread uses its own message loop, using the method is not required.

This function is a member of VDPService_Channelinterface.

Method Signature

void (*v3.Poll)(int timeout);

Parameters

Parameter Description

timeout The time limit after which the Poll method will return.

Return Values

None

RPC Functions

The vdprpc_interfaces.h header file included in the Horizon Session Enhancement SDK contains a set of structures
of function pointers to send RPC messages.

This chapter includes the following topics:

e vl.AppendNamedParam

e vl.AppendNamedReturnVal
e vl.AppendParam

e vl.AppendReturnVal

e vl.CreateChannelObject

e vl.CreateContext

e vl.DestroyChannelObject

e vl.DestroyContext

e vl.GetCommand

e vl1.Getld

e vl.GetMinimalStreamDataSize
e vl.GetNamedCommand

e vl.GetNamedParam

e vl.GetNamedReturnVal

e v1.GetObjectName

e v1.GetObjectState

e vl.GetParam

e vl.GetParamCount

e vl.GetReturnCode

e vl.GetReturnVal

e vl.GetReturnValCount

o vl.GetStreamDataHeaderTail
e vl.GetStreamDataHeaderTailSize
e vl.GetStreamDatalnfo

e vl.GetStreamDataSize

e vl.Invoke

e vl.SetCommand

e vl.SetNamedCommand

e vl.SetReturnCode

e vlVariantClear

e vlVariantCopy

e vlVariantFromBlob

e vlVariantFromChar

e vlVariantFromDouble

e vlVariantFromFloat

e vlVariantFromInt32

e vlVariantFromInt64

e vl.VariantFromShort

e vlVariantFromStr

e vlVariantFromUInt32

e vlVariantFromUInt64

e vlVariantFromUShort

e vlVariantlnit

e v2.FreeStreamDataPayload
e v2.GetStreamData

e v2.GetStreamDatalnfo

e v2.IsSideChannelAvailable

e v2.RequestSideChannel

e v2.SetOps

e v3.CreateContext

e v3.GetObjectOptions

e v4.GetObjectStateByName

vl.AppendNamedParam

Append the given Variant as a parameter to the given context and assign it a name. Note that the parameter is
added to the end of the list with all parameters, even those without assigned names.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

Bool (*v1.AppendNamedParam)(void *contextHandle, const char *name, const VDP_RPC_VARIANT *v);

Parameters

Parameter Description

contextHandle The context to append the parameter to.
name Name to assign to the parameter.

v The data for the new parameter.

Return Values

Value Description
TRUE Parameter successfully added.

FALSE Unable to append the parameter to the given context.

v1.AppendNamedReturnVal

Similar to v1.AppendReturnVal but also assigns a name to the return value. The return value is added to the end of
the list of all return values, even those without assigned names.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

Bool (*v1.AppendNamedReturnVal)(void *contextHandle, const char *name, const VDP_RPC_VARIANT *v);

Parameters

Parameter Description

contextHandle Context to add the return value to.

name .
Name for the given return value.

Data for the return value.

Return Values

Value Description
TRUE Name and return value successfully added.

FALSE Failed to add return value.

vl.AppendParam
Adds the given Variant to the context as a parameter for the method. Appends the parameter to the end of the list.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

Bool (*v1.AppendParam)(void *contextHandle, const VDP_RPC_VARIANT *v);

Parameters

Parameter Description

contextHandle The handle for the context to add the parameter to.

Variant to store in the context. A copy of the data is made.

Return Values

Value Description
TRUE Data was successfully stored.

FALSE Failed to append the Variant to the context.

v1.AppendReturnVval

Add the given Variant as a return value. The return values can be thought of as out parameters in a procedure call.
The user can return any data desired here. The Variant is added to the end of the return value list.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

Bool (*v1.AppendReturnVal)(void *contextHandle, const VDP_RPC_VARIANT *v);

Parameters

Parameter Description
contextHandle The handle for the context to append to.

Data to append.

Return Values

Value Description
TRUE Return value was successfully added.
FALSE Failed to add the given Variant as a return value.

v1l.CreateChannelObject

Creates a channel object with the given name. This call, with the same object name, must be made on both the
plug-in and the application for communication to occur.

Objects begin in the VDP_RPC_OBJ_PENDING state. After the peer object is created, which might be prior to the
call, the state goes to VDP_RPC_OBJ_CONNECTED. The sink registered with the object receives notifications of
events involving the new object. A handle for the created object is returned in the objectHandle parameter

Note Objects must be used on the thread on which they are created, unless configured with the
VDP_RPC_OBJ_CONFIG_INVOKE_ALLOW_ANY_THREAD flag. If this option is used, the user is responsible for thread
safety.

This function is a member of VDPRPC_ChannelObjectInterface.

Method Signature

Bool (*v1.CreateChannelObject)(const char *name, const VDPRPC_ObjectNotifySink *sink, void *userData,
VDPRPC_ObjectConfigurationFlags configFlags, void **objectHandle);

Parameters
Parameter Description
name

Name for the created object.

sink Sink to be registered with the new object.
userData Data to be sent to all sink callbacks. Can be NULL.
configFlags

Set of configuration options for the new object.

objectHandle Handle for the created object is stored here.

Return Values

Value Description
TRUE The object was successfully created.

FALSE Creation of the object failed.

v1.CreateContext

Allocates and returns a new channel context to be used for an RPC.

This function is a member of VDPRPC_ChannelObjectInterface.

Method Signature

Bool (*v1.CreateContext)(void *objectHandle, void **ppcontextHandle);

Parameters

Parameter Description

objectHandle A handle for a valid channel object.

ppcontextHandle A handle for the new channel context is returned here.

Return Values

Value Description
TRUE The new context was successfully created and returned.

FALSE Context creation failed.

v1.DestroyChannelObject

Frees all resources associated with the given channel object.

This function is a member of VDPRPC_ChannelObjectInterface.

Method Signature

Bool (*v1.DestroyChannelObject)(void *objectHandle);

Parameters
Parameter Description
objectHandle The handle, returned from CreateChannelObject, for the object to destroy.

Return Values

Value Description
TRUE The object was successfully destroyed.

FALSE Destruction of the object failed.

v1.DestroyContext

Frees all resources associated with a given context. Call this method only on contexts that you have created using
CreateContext(). Only contexts that will not be used should be destroyed by the user.

This function is a member of VDPRPC_ChannelObjectInterface.

Method Signature

Bool (*v1.DestroyContext)(void *contextHandle);

Parameters

Parameter Description

contextHandle The handle for the context to destroy.

Return Values

Value Description
TRUE The new context was successfully destroyed.

FALSE Destruction of the context failed.

vl.GetCommand

Queries the command code that was assigned to the given context. Use this method to determine the remote
method that was being called. Use the SetCommand method to set the command code. If O is returned, use
GetNamedCommand to fetch the command code.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

uint32 (*v1.GetCommand)(void *contextHandle);

Parameters
Parameter Description
contextHandle The handle for the context to query.

Return Values

Value Description

uint32 The uint32 command code set for this context. 0 indicates the command was not set as a uint32.

v1.Getld

Returns the unique ID for the given context. This ID can be used to map callbacks to the Invoke call that they refer
to.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

uint32 (*v1.Getld)(void *contextHandle);

Parameters

Parameter Description

contextHandle The handle for the context to be queried.

Return Values

Value Description

uint32 The ID for the given context.

v1l.GetMinimalStreamDataSize

Gets the minimal stream data size before checking the RPC packet length.

This function is a member of VDPRPC_StreamDatalnterface.

Method Signature

int (*v1.GetMinimalStreamDataSize)(int fd);

Parameters

Parameter Description

fd A valid socket handle returned by v2.SwitchToStreamDataMode.

Return Values

Value Description

uint32 The minimal size.

v1l.GetNamedCommand

Gets the command code assigned to the given context as a string. If the command was not stored as a string, this
method returns FALSE, and you must use the GetCommand method instead to get the command code.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

Bool (*v1.GetNamedCommand)(void *contextHandle, char *buffer, int bufferSize);

Parameters

Parameter Description

contextHandle The handle for the context to query.

buffer Out parameter that the name is to be stored in.
bufferSize Size of the buffer to store the name.

Return Values

Value Description

TRUE Named command successfully returned.
FALSE The command was not stored as a string.
vl.GetNamedParam

Fetch the parameter at the given index and return the name, if any, that was assigned to the parameter. If no name
was given, the name parameter remains untouched.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

Bool (*v1.GetNamedParam)(void *contextHandle, int index, char ¥*name, int nameSize, VDP_RPC_VARIANT *copy);

Parameters

Parameter Description

contextHandle The context to fetch the parameter from.

index The index of the parameter to return.

name The buffer to store the assigned name in. Can be NULL if you are not interested in the name.
nameSize Size of the passed-in buffer.

copy Variant into which the parameter data is to be copied.

Return Values

Value Description
TRUE Parameter at the given index returned and name (if any) found.

FALSE Unable to fetch the parameter and name at the given index.

vl.GetNamedReturnVal

Fetches the return value at the given index. Also returns the name assigned to the return value.

This returned value might be empty, for example, if the length of the name is 0.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

Bool (*v1.GetNamedReturnVal)(void *contextHandle, int index, char ¥name, int nameSize, const VDP_RPC_VARIANT *v);

Parameters

Parameter Description

contextHandle Context to query.

index Index of the return value to fetch.

name Buffer to store the name into. Can be NULL.
nameSize Size of the name buffer.

Y Variant to copy the return value data into.

Return Values

Value Description

TRUE Successfully fetched the return value and name at the given index.
FALSE Failed to find the return value or the name.
v1.GetObjectName

Queries the given object for the name it was assigned at creation.

This function is a member of VDPRPC_ChannelObjectInterface.

Method Signature

Bool (*v1.GetObjectName)(void *objectHandle, char *buf, uint32 bufSize);

Parameters

Parameter Description

objectHandle The handle, returned from CreateChannelObject, for the object to query.
buf The name of the object is stored in this parameter.

bufSize Size of the passed-in buf.

Return Values

Value Description
TRUE The name was successfully returned.
FALSE An error occurred and the name was not returned.

v1.GetObjectState

Queries the current state of the given object.

This function is a member of VDPRPC_ChannelObjectInterface.

Method Signature

VDPRPC_ObjectState (*v1.GetObjectState)(void *objectHandle);

Parameters
Parameter Description
objectHandle The handle, returned from CreateChannelObject, for the object to query.

Return Values

Value Description

VDP_RPC_OBJ_UNINITIALIZED Object with the given handle could not be found.

VDP_RPC_OBJ_ DISCONNECTED Matching peer object was destroyed.

VDP_RPC_OBJ_ PENDING Object created locally, waiting for other end to create a peer object.
VDP_RPC_OBJ_ CONNECTED Given object is connected to its peer on the other side of the channel.
vl.GetParam

Fetches the parameter at the given index. The parameter list index begins at zero.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

Bool (*v1.GetParam)(void *contextHandle, int i, VDP_RPC_VARIANT *copy);

Parameters
Parameter Description
contextHandle The context to query.

i Index of the parameter to fetch.

copy Variant into which the parameter is to be copied.

Return Values

Value Description
TRUE Parameter at the given index was successfully returned.

FALSE Unable to find parameter at the given index.

vl.GetParamCount

Returns the number of parameters appended to the given context.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

int (*v1.GetParamCount)(void *contextHandle);

Parameters
Parameter Description
contextHandle The handle for the context to query.

Return Values

Value Description

int Number of parameters stored in the given context.

v1.GetReturnCode

Queries the return code of a Remote Procedure Call (RPC). The return code is meant to indicate the success or
failure of the remote method call, or as an error code.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

uint32 (*v1.GetReturnCode)(void *contextHandle);

Parameters
Parameter Description
contextHandle The handle of the context to query.

Return Values

Value Description

uint32 Return code set for the given context.

v1l.GetReturnVal

Fetches the return value at the given index. Index of the return values begin at zero.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

Bool (*v1.GetReturnVal)(void *contextHandle, int i, const VDP_RPC_VARIANT *v);

Parameters
Parameter Description
contextHandle The context to query.

i Index of the return value to fetch.

v Variant into which the return value data is to be copied.

Return Values

Value Description
TRUE Return value successfully fetched.

FALSE Failed to locate return value at the given index.

v1l.GetReturnValCount

Returns the number of Variants stored in the given context as return values.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

int (*v1.GetReturnValCount)(void *contextHandle);

Parameters
Parameter Description
contextHandle The context to query.

Return Values

Value Description

int Number of return values stored in the given context.

v1.GetStreamDataHeaderTail

Fetches the header and tail data for stream data mode to send via the TCP socket. This function is mainly for
optimization by eliminating a memcpy.

This function is a member of VDPRPC_StreamDatalnterface.

Method Signature

Bool (*v1.GetStreamDataHeaderTail)(int fd, int *reqld, int reqCmd, VDP_RPC_BLOB *blob, char *header, int headerBufLen, char *tail, int
tailBufLen);

Parameters

Parameter Description

fd A valid socket handle return by v2.SwitchToStreamDataMode.

reqld RPC request ID is returned here for the caller to track each request.
reqCmd Request command.

blob Blob data which will be sent using the TCP socket.

header Buffer to hold header data.

headerBufSize Header buffer size. Must be greater than or equal to the size returned by v1.GetStreamDataHeaderTailSize.

tail Buffer to hold header data.

tailBufLen Tail buffer size. Must be greater than or equal to the size returned by v1.GetStreamDataHeaderTailSize.

Return Values

Value Description
TRUE Successfully obtained the header and the tail.

FALSE Failure.

v1.GetStreamDataHeaderTailSize

Obtains the size of the header and the tail for stream data mode (TCP socket) if neither compression nor encryption
is needed. Because stream data mode is an agent-only feature, data needs to be encapsulated in RPC format to the
client. This APl is used to calculate the size of the header and the tail.

This function is a member of VDPRPC_StreamDatalnterface.

Method Signature

Bool (*v1.GetStreamDataHeaderTailSize)(int fd, int dataSize, int *headerLen, int *tailLen);

Parameters

Parameter Description

fd A valid socket handle returned by SwitchToStreamDataMode.
dataSize The size of the data that the client intends to send.
headerLen The size of the header is returned here.

TailLen The size of the tail is returned here.

Return Values

Value Description
TRUE Successfully obtained the sizes.

FALSE Failure. Must be invalid socket handle.

v1.GetStreamDatalnfo

Parses stream data information from received binary data.

This function is a member of VDPRPC_StreamDatalnterface.

Method Signature

int (*v1.GetStreamDatalnfo)(int fd, const char *recvData, int *reqld, int *reqType, int *reqCmd, VDP_RPC_BLOB *blob);

Parameters

Parameter Description

fd A valid socket handle returned by v2.SwitchToStreamDataMode.
recvData Data that needs to be parsed.

reqld RPC request ID is returned here.

reqType RPC request type is returned here.

reqCmd RPC request command is returned here.

blob Blob data that is sent by client is returned here.

Return Values

Value Description
TRUE Successfully parsed recvData as an RPC packet.

FALSE Failure.

v1.GetStreamDataSize

Gets the RPC packet length. The parameter recvData must have at least the minimal-size amount of data.

This function is a member of VDPRPC_StreamDatalnterface.

Method Signature

int (*v1.GetStreamDataSize)(int fd, const char *recvData);

Parameters

Parameter Description

fd A valid socket handle returned by v2.SwitchToStreamDataMode.

recvData Data that needs to be parsed.

Return Values

Value Description

uint32 The size of the whole RPC packet.

vl.Invoke

Initiates an RPC between the given object and its peer on the other end of the channel.

This function is a member of VDPRPC_ChannelObjectInterface.

Method Signature

Bool (*v1.Invoke)(void *objectHandle, void *contextHandle, const VDPRPC_RequestCallback *callback, void *userData);

Parameters

Parameter Description

objectHandle Handle for the object to send the RPC through.

contextHandle A handle for the context containing the data for this RPC callback.

callback User-supplied callbacks to be used after the Invoke call.

userData User-supplied data that will be passed to the callback methods. Can be NULL.

Return Values

Value Description

TRUE Invoke call succeeded and RPC was sent.
FALSE No RPC was sent due to an error.
vl.SetCommand

Sets the command code for the given context. The command code represents the remote method that the context
is meant to represent.

Note You can also store the command as a string using SetNamedCommand. However, you can only use one
method. If you call SetNamedCommand after calling SetCommand, the uint32 command code is overwritten. Do not

use 0 as the command code because the Horizon Session Enhancement system uses 0 to indicate an error.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

Bool (*v1.SetCommand)(void *contextHandle, uint32 command);

Parameters

Parameter Description

contextHandle The handle for the context to set.
command The command code for the context.

Return Values

Value Description

TRUE Context command code was successfully set.
FALSE Unable to set the command code.
vl.SetNamedCommand

Sets the command code for the given context with a name. You can either set the command as a uint32 (using
SetCommand) or as a string, using this method. Use only one method. If you try to use both, the second command
used will overwrite the previous command.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

Bool (*v1.SetNamedCommand)(void *contextHandle, const char *command);

Parameters

Parameter Description

contextHandle The handle for the context to set.
command The command string to use.

Return Values

Value Description
TRUE Command string was successfully set.

FALSE Unable to set the command string.

v1l.SetReturnCode

Sets the return code for the given context. This should be done in the Oninvoke callback. This value represents the
success or failure of the remote call.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

Bool (*v1.SetReturnCode)(void *contextHandle, uint32 code);

Parameters

Parameter Description

contextHandle The handle for the context to set.
code Value for the return code.

Return Values

Value Description
TRUE Return code of the context set

FALSE Unable to set the return code.

vl.VariantClear

Clears and frees any resources held by the given Variant. Call this method whenever you are finished with a Variant.

This function is a member of VDPRPC_Variantinterface.

Method Signature

Bool (*v1.VariantClear)(VDP_RPC_VARIANT *v);

Parameters

Parameter Description

v The variant to clear.

Return Values

Value Description

TRUE The Variant is returned to initialized state.

FALSE The Variant is unchanged.

v1.VariantCopy

Copies the data held from the Variant src to the Variant target. Any data held by target is overwritten. Any data

previously held in target is freed before being overwritten with the data in src.

This function is a member of VDPRPC_Variantinterface.

Method Signature

Bool (*v1.VariantCopy)(VDP_RPC_VARIANT *target, const VDP_RPC_VARIANT *src);

Parameters

Parameter Description
target The variant to copy the data to.

src The variant to copy the data from.

Return Values

Value Description
TRUE Copy succeeded.

FALSE Copy failed. The target is unchanged.

vl.VariantFromBlob

Stores a copy of the given VDP_RPC_BLOB in the given Variant. Use this method only for data that does not fit any
of the other types. Data is sent as-is, so changes in architecture (such as sending from the Linux client to the
Windows guest) and differences in structure padding and alignment can cause problems with your data.

This function is a member of VDPRPC_Variantinterface.

Method Signature

Bool (*v1.VariantFromBlob)(VDP_RPC_VARIANT *v, VDP_RPC_BLOB *blob);

Parameters

Parameter Description

v The variant to set.

blob The VDP_RPC_BLOB to copy.

Return Values

Value Description
TRUE The VDP_RPC_BLOB was successfully copied into the Variant.

FALSE Setting the Variant failed.

vl.VariantFromChar

Stores the given char in the given Variant and sets the internal type properly.

This function is a member of VDPRPC_Variantinterface.

Method Signature

Bool (*v1.VariantFromChar)(VDP_RPC_VARIANT *y, char c);

Parameters

Parameter Description
v The variant to set.

c The char to store.

Return Values

Value Description
TRUE The char was successfully stored in the Variant.

FALSE Setting the Variant failed.

vl.VariantFromDouble

Stores the given double in the given Variant and sets the internal type properly.

This function is a member of VDPRPC_Variantinterface.

Method Signature

Bool (*v1.VariantFromDouble)(VDP_RPC_VARIANT *v, double d);

Parameters

Parameter Description

v The variant to set.

d The double to store.

Return Values

Value Description
TRUE The double was successfully stored in the Variant.

FALSE Setting the Variant failed.

vl.VariantFromFloat

Stores the given float in the given Variant and sets the internal type properly.

Method Signature

Bool ((*v1.VariantFromFloat)(VDP_RPC_VARIANT *y, float f);

Parameters

Parameter Description
v The variant to set.

f The float to store.

Return Values

Value Description
TRUE The float was successfully stored in the Variant.

FALSE Setting the Variant failed.

vl.VariantFromint32

Stores the given int32 in the given Variant and sets the internal type properly.

This function is a member of VDPRPC_Variantinterface.

Method Signature

Bool (*v1.VariantFromInt32)(VDP_RPC_VARIANT *y, int32 i);

Parameters

Parameter Description

v The variant to set.

i The int32 to store.

Return Values

Value Description
TRUE The int32 was successfully stored in the Variant.

FALSE Setting the Variant failed.

vl.VariantFromInt64

Stores the given int64 in the given Variant and sets the internal type properly.

Method Signature

Bool (*v1.VariantFromInt64)(VDP_RPC_VARIANT *y, int64 i);

Parameters

Parameter Description
v The variant to set.

i The int64 to store.

Return Values

Value Description
TRUE The int64 was successfully stored in the Variant.

FALSE Setting the Variant failed.

vl.VariantFromShort

Stores the given short in the given Variant and sets the internal type properly.

This function is a member of VDPRPC_Variantinterface.

Method Signature

Bool (*v1.VariantFromShort)(VDP_RPC_VARIANT *y, short s);

Parameters

Parameter Description

v The variant to set.

s The short to store.

Return Values

Value Description
TRUE The short was successfully stored in the Variant.

FALSE Setting the Variant failed.

vl.VariantFromStr

Stores a copy of the given const char * in the given Variant and sets the internal type properly.

Method Signature

Bool (*v1.VariantFromStr)(VDP_RPC_VARIANT *y, const char *str);

Parameters

Parameter Description
v The variant to set.

str The const char * to copy.

Return Values

Value Description
TRUE The const char * was successfully copied into the Variant.

FALSE Setting the Variant failed.

vl.VariantFromUInt32

Stores the given uint32 in the given Variant and sets the internal type properly.

This function is a member of VDPRPC_Variantinterface.

Method Signature

Bool (*v1.VariantFromUInt32)(VDP_RPC_VARIANT *y, uint32 ui);

Parameters

Parameter Description
v The variant to set.

ui The uint32 to store.

Return Values

Value Description
TRUE The uint32 was successfully stored in the Variant.

FALSE Setting the Variant failed.

vl.VariantFromUInt64

Stores the given uint64 in the given variant and sets the internal type properly.

Method Signature

Bool (*v1.VariantFromUInt64)(VDP_RPC_VARIANT *y, uint64 ui);

Parameters

Parameter Description
v The variant to set.

ui The uint64 to store.

Return Values

Value Description
TRUE The uint64 was successfully stored in the variant.

FALSE Setting the variant failed.

vl.VariantFromUShort

Stores the given unsigned short in the given Variant and sets the internal type properly.

This function is a member of VDPRPC_Variantinterface.

Method Signature

Bool (*v1.VariantFromUShort)(VDP_RPC_VARIANT *y, unsigned short us);

Parameters

Parameter Description
v The variant to set.

us The unsigned short to store.

Return Values

Value Description
TRUE The unsigned short was successfully stored in the Variant.

FALSE Setting the Variant failed.

v1l.Variantlnit

Initializes the given VDP_RPC_VARIANT. To prevent memory corruption issues, you must initialize a variant before
using it.

This function is a member of VDPRPC_Variantinterface.

Method Signature

Bool (*v1.Variantinit)(VDP_RPC_VARIANT *v);

Parameters

Parameter Description

v The variant to be initialized.

Return Values

Value Description
TRUE The variant was successfully initialized.

FALSE Initialization failed.

v2.FreeStreamDataPayload

Frees payload memory for the blob data that is returned by v2.GetStreamData or v2.GetStreamDatalnfo.

This function is a member of VDPRPC_StreamDatalnterface.

Method Signature

int (*v2.FreeStreamDataPayload)(VDP_RPC_BLOB *payload);

Parameters

Parameter Description

payload Blob data that needs to be freed.

Return Values

Value Description
TRUE Payload successfully freed.

FALSE Failed to free payload data.

v2.GetStreamData

Obtains the stream data to send via the TCP socket. This API is used when data needs either compression or
encryption. It also works if neither of them is needed, but the data involves one additional memory allocation and
memcpy. Be sure to call v2.FreeStreamDataPayload to avoid a memory leak.

This function is a member of VDPRPC_StreamDatalnterface.

Method Signature

int (*v2.GetStreamData)(int fd, uint32 ctxOptions, int *reqld, int reqCmd, VDP_RPC_BLOB *blob, VDP_RPC_BLOB *payload);

Parameters

Parameter Description

fd A valid socket handle returned by v2.SwitchToStreamDataMode.
ctxOptions Compression and encryption options.

reqgld RPC request ID is returned here for caller to track each request.
reqCmd Request command.

blob Blob data that needs to be sent.

payload Actual RPC packet data is returned in payload.

Return Values

Value Description
TRUE Payload creation succeeded.

FALSE Payload creation failed.

v2.GetStreamDatalnfo

Same as v1.GetStreamDatalnfo except for one more parameter, bNeedCleanup, to indicate whether the blob data
needs to be cleaned up. The size of recvData has to be greater than or equal to the size returned by

v1.GetStreamDataSize.

This function is a member of VDPRPC_StreamDatalnterface.

Method Signature

int (*v2.GetStreamDatalnfo)(int fd, const char *recvData, int *reqld, int *reqType, int reqCmd, Bool *bNeedCleanup, VDP_RPC_BLOB *blob);

Parameters

Parameter Description

fd A valid socket handle returned by v2.SwitchToStreamDataMode.
recvData Data that needs to be parsed.

reqgld RPC request ID is returned here.

reqType RPC request type is returned here.

reqCmd RPC request command is returned here.

bNeedCleanup Boolean value is returned here to indicate if the blob data need to be freed by v2.FreeStreamDataPayload.

blob Blob data that is sent from the client is returned here.

Return Values

Value Description
TRUE RecvData is parsed as RPC packet successfully.

FALSE Failure.

v2.IsSideChannelAvailable

Determines whether a side channel of the given type is available for use by any channel object.

Currently, only one object can use an available channel.

This function is a member of VDPRPC_ChannelObjectInterface.

Method Signature

Bool (*v2.IsSideChannelAvailable)(VDPRPC_SideChannelType type);

Parameters

Parameter Description

type Side channel type. Either virtual side channel (VDP_RPC_SIDE_CHANNEL_TYPE_PCOIP) or TCP side channel
(VDP_RPC_SIDE_CHANNEL_TYPE_TCP)

Return Values

Value Description
TRUE Side channel of the given type is available.

FALSE Side channel of the given type is not available.

v2.RequestSideChannel

Requests a particular type of side channel for a given object.

This function is a member of VDPRPC_ChannelObjectInterface.

Method Signature

Bool (*v2.RequestSideChannel)(void *objectHandle, VDPRPC_SideChannelType type, const char *token);

Parameters

Parameter Description

objectHandle Handle for the object.

type The type of side channel being requested.

token The name of the side channel to use. If NULL, the application token is used.

Return Values

Value Description
TRUE Request succeeded.

FALSE Request failed.

v2.5etOps

Sets channel context options. The most common use is to set the RPC call in post mode, which does not expect any
response for this channel context.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

Bool (*v2.SetOps)(void *contextHandle, VDPRPC_ChannelContextOps option, const VDP_RPC_VARIANT *v);

Parameters
Parameter Description
contextHandle Handle for a valid channel context.
option Specifies how the RPC call should behave. This parameter can take the following VDPRPC_ChannelContextOps values:
VDP_RPC_CHANNEL_CONTEXT_OPT_POST
You must set this option before calling Invoke() on the sender side.
If vis set to 0, the RPC is set to the default request mode. In request mode, a response is sent back from the peer and
delivered to the application through the OnDone callback.
If vis set to 1, the RPC is set to post mode. In post mode, the peer doesn't return a response and no OnDone callback is
received for this RPC.
VDP_RPC_CHANNEL_CONTEXT_OPT_BEGIN_ASYNC_RESULT
You must set this option before returning from Oninvoke on the receiver side. This option has no effect on RPCs in post
mode.
If vis set to 0, the RPC operates in default synchronous mode. In synchronous mode, the response from the RPC is sent
back to the sender immediately after Oninvoke returns.
If vis set to 1, the RPC operates in asynchronous mode. In asynchronous mode, the response from the RPC is not sent
until v2.SetOps is called with the
VDP_RPC_CHANNEL_CONTEXT_OPT_END_ASYNC_RESULT option.
RPCs are processed on a single thread through the application's Oninvoke callback. If one RPC call takes a long time to
execute, other RPC calls will be blocked until it finishes executing. Asynchronous mode is a way to process an RPCin a
different thread so that other RPCs can be processed in parallel.
VDP_RPC_CHANNEL_CONTEXT_OPT_END_ASYNC_RESULT
When you set this option, the result of an asynchronous RPC is immediately sent back to the peer.
Do not set this option on synchronous RPCs.
v A uint32 that specifies whether a certain option is activated or deactivated. A value of 1 activates and a value of 0

deactivates the option.

Return Values

Value Description
TRUE Success

FALSE Failure

v3.CreateContext

Same as v1.CreateContext but supports compression and encryption options.

This function is a member of VDPRPC_ChannelObjectInterface.

Method Signature

Bool (*v3.CreateContext)(void *objectHandle, uint32 options, void **ppcontextHandle);

Parameters
Parameter Description
objectHandle Handle for a valid channel object.
options Specifies whether compression and encryption will apply for this context.
You can combine the uint32 values using the bitwise OR operator " | ". However, you can select only one encryption
option and one compression option. To get the values supported by the current channel, use v3.GetObjectOptions.
The following available encryption options are supported on the TCP side channel only. Other side channel types
transfer data over the main channel, which is already encrypted and secured by the remote protocol.
e VDP_RPC_CRYPTO_AES
e VDP_RPC_CRYPTO_SALSA
The following available compression options are supported on the main channel and all side channels.
e VDP_RPC_COMP_SNAPPY
e VDP_RPC_COMP_ZLIB
e VDP_RPC_COMP_MSFT
ppcontextHandle A handle of a new channel context is returned here.

Return Values

Value Description
TRUE A new context was successfully created and returned.

FALSE Context creation failed.

v3.GetObjectOptions

Obtains the following object options after an object is created: (1) encryption and compression options which both
sides agree on; and (2) side channel types which peer does not support.

This function is a member of VDPRPC_ChannelObjectInterface.

Method Signature

Bool (*v3.GetObjectOptions)(void *objectHandle, uint32 *options);

Parameters

Parameter Description
objectHandle Handle for the object.
options Returns a set of bits that determines which encryption and compression options are supported on this channel when

calling v3.CreateContext. Bits not included in the returned set are reserved for internal use and can be disregarded.
The available encryption options are as follows.

e VDP_RPC_CRYPTO_AES

e VDP_RPC_CRYPTO_SALSA

The available compression options are as follows.
® VDP_RPC_COMP_SNAPPY
e VDP_RPC_COMP_ZLIB
® VDP_RPC_COMP_MSFT

Return Values

Value Description
TRUE Request succeeded.

FALSE Request failed.

v4.GetObjectStateByName

Retrieves the current state of the given object based on the name of the object.

This function is a member of VDPRPC_ChannelObjectInterface.

Method Signature

VDPRPC_ObjectState (*v4.GetObjectStateByName)(const char *name);

Parameters

Parameter Description

name The name of the given object.

Return Values

Value
VDP_RPC_OBJ_UNINITIALIZED
VDP_RPC_OBJ_ DISCONNECTED
VDP_RPC_OBJ_ PENDING

VDP_RPC_OBJ_ CONNECTED

Description

Object with the given handle could not be found.

Matching peer object was destroyed.

Object created locally, waiting for other end to create a peer object.

Given object is connected to its peer on the other side of the channel.

VDPOverlay Functions

The vdpOverlay.h header file defines the set of functions to use in order to support overlay functionality in an
application. This chapter covers VDPOverlayGuest_Interface functions and VDPOverlayClient_Interface functions.

VDPOverlayGuest_Interface Functions

With VDPOverlayGuest_Interface functions, you can work with windows; enable and disable the client-side overlay;
work with the layout mode for the overlay; send a message to the client-side plug-in; and release all allocated
resources.

v1.DisableOverlay

Deactivates the client-side overlay. Deactivating the overlay is a lightweight way to hide the client-side overlay.
Unlike v1.UnregisterWindow(), resources used to maintain the overlay are not released.

This function is a member of VDPOverlayGuest_Interface.

Method Signature
VDPOverlay_Error (*v1.DisableOverlay)(VDPOverlay_Windowld windowld, VDPOverlay_UserArgs userArgs);

Parameters

Parameter Description

windowld The operating system window identifier. It must be previously registered with VDPOverlayGuest_RegisterWindow().

userArgs Data that is to be passed to the client-side plug-in when VDPOverlayClient_OverlayEnabled event is sent.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay APl was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The windowld or userArgs parameter was invalid, or there was an error with msg.

v1.EnableOverlay

Enables the client-side overlay. Once the window is registered and ready, this function must be called to display the
client-side overlay.

This function is a member of VDPOverlayGuest_Interface.

Method Signature
VDPOverlay_Error (*v1.EnableOverlay)(VDPOverlay_Windowld windowld, VDPOverlay_UserArgs userArgs);

Parameters

Parameter Description

windowld The operating system window identifier. It must be previously registered with VDPOverlayGuest_RegisterWindow().

userArgs Data that is to be passed to the client-side plug-in when VDPOverlayClient_OverlayEnabled event is sent.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.

VDP_OVERLAP_ERROR_NOT_INITIALIZED Overlay APl was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The windowld or userArgs parameter was invalid, or there was an error with msg.

v1.Exit for the Guest-Side Library
Frees all allocated resources held by the Horizon Session Enhancement Overlay APls and unregisters all windows.

This function is a member of VDPOverlayGuest_Interface.

Method Signature
VDPOverlay_Error (*v1.Exit)(void);

Parameters
None

Return Values

Value Description
VDP_OVERLAY_ERROR_SUCCESS Overlay successfully shut down.
VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay was never initialized.

v1.GetlLayoutMode

Gets the current layout mode for the overlay. The layout mode is used to determine how an image is drawn (for
example, scaled, cropped, and so on) when the size of the image does not match the size of the overlay.

This function is a member of VDPOverlayGuest_Interface.

Method Signature
VDPOverlay_Error (*v1.GetLayoutMode)(VDPOverlay_Windowld windowld, VDPOverlay_LayoutMode *plLayoutMode);

Parameters

Parameter Description

windowld The window ID of the overlay. It must have been previously registered with VDPOverlayGuest_RegisterWindow().

pLayoutMode Current layout mode is stored here.

Return Values

Value Description
VDP_OVERLAY_ERROR_SUCCESS Current layout mode was successfully retrieved.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay APl was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER pLayoutMode is NULL.

VDP_OVERLAY_ERROR_WINDOW_NOT_REGISTERED The given windowld has not been registered with the Overlay API.

v1.Init for the Guest-Side Library

Initializes the guest-side overlay library. This must be the first overlay API function called.

This function is a member of VDPOverlayGuest_Interface.

Method Signature

VDPOverlay_Error (*v1.Init)(const VDPOverlayGuest_Sink* sink, void* userData);

Parameters

Parameter Description
sink Function pointers called to notify users of overlay events.

userData Parameter that is passed to sink function callbacks.

Return Values

Value

VDP_OVERLAY_ERROR_SUCCESS
VDP_OVERLAY_ERROR_ALREADY_INITIALIZED
VDP_OVERLAY_ERROR_INVALID_PARAMETER

VDP_OVERLAY_ERROR_ALLOCATION_ERROR

v1.1sOverlayEnabled

Description

Initialization succeeded.

Init has already been called.

NULL sink parameter, or invalid sink version.

Internal system error.

Queries whether the overlay associated with the given windowld is currently enabled.

This function is a member of VDPOverlayGuest_Interface.

Method Signature
Bool (*v1.IsOverlayEnabled)(VDPOverlay_Windowld windowld);

Parameters

Parameter Description

The window ID of the overlay. It must
windowld have been previously registered with
VDPOverlayGuest_RegisterWindow().

Return Values

Value Description
TRUE The overlay is enabled.

FALSE The overlay is disabled.

v1.IsWindowRegistered
Determines if a window is currently registered with the guest-side Overlay API.

This function is a member of VDPOverlayGuest_Interface.

Method Signature
Bool (*v1.IsWindowRegistered)(VDPOverlay_Windowld windowld);

Parameters

Parameter Description

windowld The window ID of the overlay.

Return Values

Value Description
TRUE Window is currently registered.

FALSE The given window ID is not registered.

v1.RegisterWindow

Registers a window to be overlayed. The position, size, and so on of the window are sent to the client so that a
client-side plug-in can draw an area of the desktop Ul that covers the window, giving the illusion that the drawing is
happening on the guest side.

This function is a member of VDPOverlayGuest_Interface.

Method Signature
VDPOverlay_Error (*v1.RegisterWindow)(VDPOverlay_Windowld windowld, VDPOverlay_UserArgs userArgs);

Parameters

Parameter Description
windowld The window ID of the overlay cast to a VDPOverlay_Windowld. A window can only be registered once.

userArgs Data that is to be passed to the client-side plug-in when the OnwindowRegistered() event handler is called.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Window was successfully registered.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER Invalid window ID.

VDP_OVERLAY_ERROR_ALLOCATION_ERROR Internal system error.

VDP_OVERLAY_ERROR_WINDOW_ALREADY_REGISTERED The given window ID has already been registered with the Overlay
system.

v1.SendMsg for the Guest-Side Library
Sends a message to the client-side plug-in. The client's OnUserMsg event handler is called with the message.

This function is a member of VDPOverlayGuest_Interface.

Method Signature
VDPOverlay_Error (*v1.SendMsg)(VDPOverlay_Windowld windowld, void *msg, uint32 msglLen);

Parameters

Parameter Description

The window ID of the overlay. It must have been previously registered with VDPOverlayGuest_RegisterWindow().

windowld VDP_OVERLAY_WINDOW_ID_NONE can also be passed if the message is not directed to a particular window.
msg Buffer that contains the message.
msglLen Size of the msg buffer.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS The message was sent to the client.
VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay APl has not been initialized.
VDP_OVERLAY_ERROR_INVALID_PARAMETER Error occurred sending the supplied message.

VDP_OVERLAY_ERROR_WINDOW_NOT_REGISTERED The given windowld has not been registered with the Overlay API.

vl.SetLayoutMode

Sets the current layout mode for the overlay. The layout mode is used to determine how an image is drawn (for
example, scaled, cropped, and so on) when the size of the image doesn't match the size of the overlay.

This function is a member of VDPOverlayGuest_Interface.

Method Signature
VDPOverlay_Error (*v1.SetLayoutMode)(VDPOverlay_Windowld windowld, VDPOverlay_LayoutMode layoutMode);

Parameters

Parameter Description

windowld The window ID of the overlay. It must have been previously registered with VDPOverlayGuest_RegisterWindow().

Parameter

layoutMode

Description

Determines how the image is drawn. This can be one of the following VDPOverlay_LayoutMode values:

VDP_OVERLAY_LAYOUT_CENTER

The image will be drawn centered in the overlay and clipped to the size of the overlay. No scaling will take place.

VDP_OVERLAY_LAYOUT_TILE
The image will be tiled to fill the overlay. The image is not scaled but will be clipped on the right/bottom edges of the
overlay.

VDP_OVERLAY_LAYOUT_SCALE / VDP_OVERLAY_LAYOUT_SCALE_SHRINK_ONLY

The image will be drawn to fill the entire overlay. No attempt at maintaining the aspect ratio of the image is made.

VDP_OVERLAY_LAYOUT_CROP / VDP_OVERLAY_LAYOUT_CROP_SHRINK_ONLY

The image will be scaled to fill the entire overlay while maintaining the aspect ratio. Parts of the image will be clipped if

necessary.

VDP_OVERLAY_LAYOUT_LETTERBOX / VDP_OVERLAY_LAYOUT_LETTERBOX_SHRINK_ONLY

The image will be scaled such that either the width or height of the image will match the width/height of the overlay. The
other dimension will be scaled to maintain the aspect ratio. No part of the image will be clipped but the image may not fill

the entire overlay.

VDP_OVERLAY_LAYOUT_MULTIPLE_CENTER / VDP_OVERLAY_LAYOUT_MULTIPLE_CORNER

Multiple mode splits the overlay into 9 equal-sized boxes (like a tic-tac-toe board). The image is then scaled to fit into the
center and corner boxes. This mode can be combined with any of the basic layout modes to determine how the image is

scaled to fit in the box.

If, after applying the layout mode, the image doesn't fill the entire box,

VDP_OVERLAY_LAYOUT_MULTIPLE_CENTER places the image in the center of each box and
VDP_OVERLAY_LAYOUT_MULTIPLE_CORNER justifies the image within each box to the nearest corner of the overlay. When
combined with basic layout modes that always fill the overlay (e.g.

VDP_OVERLAY_LAYOUT_SCALE and VDP_OVERLAY_LAYOUT_TILE), the multiple modes
VDP_OVERLAY_LAYOUT_MULTIPLE_CENTER and VDP_OVERLAY_LAYOUT_MULTIPLE_CORNER behave the same.

VDP_OVERLAY_LAYOUT_TO_MULTIPLE (multipleMode, basicMode)

Where multipleMode must be either VDP_OVERLAY_LAYOUT_MULTIPLE_CENTER or
VDP_OVERLAY_LAYOUT_MULTIPLE_CORNER, and basicMode must be one of the basic layout modes listed earlier in this
table.

VDP_OVERLAY_LAYOUT_TO_MULTIPLE returns a layout mode from the given multiple and basic layout modes.

Return Values

Value

Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay APl was not initialized.

Value Description

VDP_OVERLAY_ERROR_INVALID_PARAMETER The windowld or layoutMode parameter was invalid, or there was an error with
msg.

VDP_OVERLAY_ERROR_NOT_LOCAL_OVERLAY The overlayld of a guest-side overlay was passed to a function that can only be

called on a local overlay.

v1.UnregisterWindow

Unregisters a previously registered window. This method not only deactivates the client-side overlay, but also
releases any resources allocated to maintain the overlay.

This function is a member of VDPOverlayGuest_Interface.

Method Signature
VDPOverlay_Error (*v1.UnregisterWindow)(VDPOverlay_Windowld windowld, VDPOverlay_UserArgs userArgs);

Parameters

Parameter Description

windowld The window ID of the overlay. The windowld must have been previously registered with
VDPOverlayGuest_RegisterWindow().

userArgs Data that is to be passed to the client-side plug-in when the VDPOverlayClient_WindowUnregistered

event is sent.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Window was successfully unregistered.
VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay has not been initialized.
VDP_OVERLAY_ERROR_WINDOW_NOT_REGISTERED The given window ID was never registered with the Overlay system.
v2.GetColorkey

Retrieves the color key currently assigned to the windowld.

The color key is VDP_OVERLAY_HOST_COLORKEY_NONE until the windowld is assigned a color key by the overlay
services.

This function is a member of VDPOverlayGuest_Interface.

Method Signature
VDPOverlay_Error (*v2.GetColorkey)(VDPOverlay_Windowld windowld, uint32* colorkey);

Parameters

Parameter Description

windowld The window ID of the overlay, which must have been previously registered with VDPOverlayGuest_RegisteredWindow().

colorkey A pointer to a unit32 that contains the color key.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Current information retrieved.
VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay APl was not initialized.
VDP_OVERLAY_ERROR_INVALID_PARAMETER The windowld or colorkey parameter was invalid.
VDP_OVERLAY_ERROR_WINDOW_NOT_REGISTERED The given windowld has not been registered with the Overlay API.
v3.GetAreaRect

Gets the current constraining area of the overlay that was set by v3.SetAreaRect().

This function is a member of VDPOverlayGuest_Interface.

Method Signature
VDPOverlay_Error (*v3.GetAreaRect)(VDPOverlay_Windowld windowld, VDPOverlay_Rect* pRect);

Parameters

Parameter Description

windowld The window ID of the overlay. The windowld must have been previously registered.

A pointer to a VDPOverlay_Rect which returns the area of the window that is displaying the overlay. An area of all zeros

Rect
P indicates that the overlay doesn't have a constraining area set on it.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Constraining area of the overlay was successfully retrieved.
VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay APl was not initialized.
VDP_OVERLAP_ERROR_INVALID_PARAMETER One of the parameter entries was invalid
VDP_OVERLAP_ERROR_WINDOW_NOT_REGISTERED The given windowld has not been registered with the Overlay API.
v3.GetlLayer

Gets the layer of an overlay as set by v3.SetlLayer().

This function is a member of VDPOverlayGuest_Interface.

Method Signature
VDPOverlay_Error (*v3.GetLayer)(VDPOverlay_Windowld windowld, uint32* pLayer);

Parameters

Parameter Description
windowld The window ID of the overlay. The windowld must have been previously registered.

pLayer Returns the layer of the overlay.

Return Values

Value Description
VDP_OVERLAY_ERROR_SUCCESS Layer of the overlay was successfully retrieved.
VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay APl was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER pLayeris NULL.

VDP_OVERLAY_ERROR_WINDOW_NOT_REGISTERED The given windowld has not been registered with the Overlay API.

v3.RegisterWindow

Registers a window to be overlayed. The position, size, and so on, of the window are sent to the client so that a
client-side plug-in can draw an area of the desktop Ul that covers the window, giving the illusion that the drawing is
happening on the guest side.

This function performs the same operations as v1.RegisterWindow() but supports additional options.

m A window can be registered multiple times, allowing you to use different areas of the window to display the
overlay image. Use SetAreaRect() to define the area within the window for displaying the overlay image.

m The first parameter is a VDPOverlay HWND instead of a VDPOverlay_Windowld. The size of a
VDPOverlay_Windowld is 32-bits but on 64-bit Windows an HWND is 64 bits. The parameter
VDPOverlay HWND, which is defined as an HWND, removes the need to cast the HWND to a
VDPOverlay_Windowld. This solution guarantees that bits are not lost when casting.

This function is a member of VDPOverlayGuest_Interface.

Method Signature
VDPOverlay_Error (*v3.RegisterWindow)(VDPOverlay_ HWND hWnd, VDPOverlay_UserArgs userArgs, VDPOverlay_Windowld* pWindowlId);

Parameters

Parameter Description

hwWnd The operating system window identifier. A window can be registered multiple times.

userArgs Data that is to be passed to the client-side plug-in when the OnWindowRegistered() event handler is called.

Parameter Description

pWindowld

Return Values

Returns a VDPOverlay_Windowld for use in other VDPOverlayGuest_Interface API calls.

Value

VDP_OVERLAY_ERROR_SUCCESS
VDP_OVERLAY_ERROR_NOT_INITIALIZED
VDP_OVERLAY_ERROR_INVALID_PARAMETER
VDP_OVERLAY_ERROR_ALLOCATION_ERROR

VDP_OVERLAY_ERROR_WINDOW_ALREADY_REGISTERED

v3.SetAreaRect

Sets the area of the window for displaying the overlay.

This function is a member of VDPOverlayGuest_Interface.

Method Signature

Description

Window was successfully registered.

Overlay not initialized.

Invalid window ID.

Internal system error.

The given window ID has already been registered with the Overlay
system.

VDPOverlay_Error (*v3.SetAreaRect)(VDPOverlay_Windowld windowld, VDPOverlay_Rect* pRect);

Parameters
Parameter Description
windowld The operating system window identifier. The windowld must have been previously registered.

A pointer to a VDPOverlay_Rect which defines the area of the window for displaying the overlay.
pRect Passing NULL removes the constraining area and displays the image in the entire area of the

window.

Return Values

Value

Description

VDP_OVERLAY_ERROR_SUCCESS

No error. The function was successful.

VDP_OVERLAY_ERROR_NOT_INITIALIZED

Overlay APl was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER

One of the parameter entries was invalid.

VDP_OVERLAY_ERROR_WINDOW_NOT_REGISTERED

The given windowld has not been registered with the Overlay API.

v3.SetLayer

Sets the layer on an overlay. If two overlays registered to the same window have overlapping area rectangles, you
can specify which overlay is on top by setting its layer. Layers have no effect on overlays registered to different
operating system windows.

This function is a member of VDPOverlayGuest_Interface.

Method Signature
VDPOverlay_Error (*v3.SetLayer)(VDPOverlay_Windowld windowld, uint32 layer);

Parameters

Parameter Description

windowld The operating system window identifier. The windowld must have been previously registered.

layer The layer of the overlay. Overlays with a higher layer value will be on top of overlays with a lower layer value. If two overlays
have the same layer value the overlay created last will be on top.

Return Values

Value Description
VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.
VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The windowld parameter was invalid.

v4.GetAreaRect

Gets the current constraining area of the overlay that was set by v4.SetAreaRect().

This function is a member of VDPOverlayGuest_Interface.

Method Signature
VDPOverlay_Error (*v4.GetAreaRect)(VDPOverlay_Windowld windowld, Bool* pEnabled, Bool* pClipToWindow,
VDPOverlay_Rect* pRect);

Parameters

Parameter Description

windowld The window ID of the overlay. The windowld must have been previously registered.

pEnabled A pointer to a Bool which returns the enabled flag passed to v4.SetAreaRect(). Pass NULL to not return the value.

pClipToWindow A pointer to a Bool which returns the clipToWindow flag passed to v4.SetAreaRect(). Pass NULL to not return the value.

pRect A pointer to a VDPOverlay_Rect which returns the rectangle passed to v4.SetAreaRect(). Pass NULL to not return the value.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Constraining area of the overlay was successfully retrieved.
VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay APl was not initialized.
VDP_OVERLAP_ERROR_INVALID_PARAMETER One of the parameter entries was invalid
VDP_OVERLAP_ERROR_WINDOW_NOT_REGISTERED The given windowld has not been registered with the Overlay API.

v4.GetBackgroundColor
Gets the current color used to paint the background of the overlay.

This function is a member of VDPOverlayGuest_Interface.

Method Signature
VDPOverlay_Error (*v4.GetBackgroundColor)(VDPOverlay_Windowld windowld, uint32* pBackgroundColor);

Parameters

Parameter Description

windowld The window ID of the overlay. The windowld must have been previously registered.
pBackgroundColor A pointer to a uint32 which returns the color passed to v4.SetBackgroundColor().

Return Values

Value Description
VDP_OVERLAY_ERROR_SUCCESS The current background color was successfully retrieved.
VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The windowld or pBackgroundColor parameter was invalid.

VDP_OVERLAY_ERROR_WINDOW_NOT_REGISTERED The given windowld has not been registered with the Overlay API.

v4.GetHWnd

With v1.RegisterWindow() the HWND and windowld are the same but v3.RegisterWindow() returns a unique
windowld. This function provides a way to retrieve the original HWND used to register the window.

This function is a member of VDPOverlayGuest_Interface.

Method Signature
VDPOverlay_Error (*v4.GetHWnd)(VDPOverlay_Windowld windowld, VDPOverlay_ HWND* pHWnd);

Parameters

Parameter Description

windowld The window ID of the overlay. The windowld must have been previously registered.

pHWnd A pointer to a VDPOverlay_HWND which returns the window handle used to register the window.

Return Values

Value

VDP_OVERLAY_ERROR_SUCCESS

VDP_OVERLAY_ERROR_NOT_INITIALIZED
VDP_OVERLAY_ERROR_INVALID_PARAMETER

VDP_OVERLAY_ERROR_WINDOW_NOT_REGISTERED

v4.GetInfoString

Description

The original HWND used to register the window was successfully
retrieved.

Overlay APl was not initialized.

pHWnNd is NULL.

The given windowld has not been registered with the Overlay API.

Gets the current information string for the overlay as set by v4.SetinfoString().

This function is a member of VDPOverlayGuest_Interface.

Method Signature

VDPOverlay_Error (*v4.GetInfoString)(VDPOverlay_Windowld windowld, char* infoStr, int32 infoStrSize);

Parameters

Parameter Description

windowld The window ID of the overlay. The windowld must have been previously registered.
infoStr A pointer to a buffer that is filled with the current information string.

infoStrSize The size of the infoStr buffer.

Return Values

Value

VDP_OVERLAY_ERROR_SUCCESS

VDP_OVERLAY_ERROR_NOT_INITIALIZED

VDP_OVERLAY_ERROR_INVALID_PARAMETER

Description

Current information retrieved.

Overlay APl was not initialized.

One of the parameter entries was invalid.

VDP_OVERLAY_ERROR_WINDOW_NOT_REGISTERED The given windowld has not been registered with the Overlay API.

v4.SetAreaRect

Sets the area of the window for displaying the overlay. Same as v3.SetAreaRect(), but with additional parameters for

turning on and off the rectangle area and for clipping the rectangle area to the window.

This function is a member of VDPOverlayGuest_Interface.

Method Signature
VDPOverlay_Error (*v4.SetAreaRect)(VDPOverlay_Windowld windowld, Bool enabled, Bool clipToWindow, VDPOverlay_Rect* pRect);

Parameters

Parameter

windowld

enabled

clipToWindow

pRect

Description

The window ID of the overlay. The windowld must have been previously registered.

Determines when the area rectangle is enabled. If TRUE, the overlay is constrained to the given rectangle.
If FALSE, the overlay will be displayed in the entire area of the window.

Determines if the given area rectangle is clipped to the window.

Note The image displayed in the overlay is always clipped to the window.

When this flag is TRUE, the given area rectangle is clipped to the window before the layout mode is applied, such that the

image is scaled down to fit inside the clipped area rectangle.

When this flag is FALSE, the layout mode is applied first and then the image is clipped to the window. In this case, the image
doesn't shrink when the bounds of the area rectangle extend past the bounds of the window, but less of the image is shown.

A pointer to a VDPOverlay_Rect which defines the area of the window for displaying the overlay. Passing NULL removes the
constraining area and displays the image in the entire area of the window.

Return Values

Value Description
VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.
VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay APl was not initialized.
VDP_OVERLAY_ERROR_INVALID_PARAMETER One of the parameter entries was invalid.

VDP_OVERLAY_ERROR_WINDOW_NOT_REGISTERED The given windowld has not been registered with the Overlay API.

v4.SetBackgroundColor

Sets the background color to use when painting the area of the window that the overlay covers. This color is visible
in the area of the overlay that the image does not cover, for example, the borders of the image when the layout
mode is VDP_OVERLAY_LAYOUT_LETTERBOX. The background color is also visible if the image has an alpha
channel.

This function is a member of VDPOverlayGuest_Interface.

Method Signature
VDPOverlay_Error (*v4.SetBackgroundColor)(VDPOverlay_Windowld windowld, uint32 bgColor);

Parameters

Parameter Description

windowld The operating system window identifier. The windowld must have been previously registered.

bgColor The color to use when painting the overlay, in XXRRGGBB format. The alpha value in the color is ignored and set to OxFF. Pass 0
to turn off painting the background, which allows the application to show through.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.
VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay APl was not initialized.
VDP_OVERLAY_ERROR_INVALID_PARAMETER The windowld or bgColor parameter was invalid.
VDP_OVERLAY_ERROR_WINDOW_NOT_REGISTERED There is an error with a low-level library. This error code should be treated

as similar to INVALID_PARAMETER.

v4.SetInfoString

Sets a string that is rendered on top of the overlay. The string can contain arbitrary information which can assist
with closed captioning or debugging information.

This function is a member of VDPOverlayGuest_Interface.

Method Signature
VDPOverlay_Error (*v4.SetInfoString)(VDPOverlay_Windowld windowld, const char* infoStr);

Parameters

Parameter Description

windowld The window ID of the overlay. The windowld must have been previously registered.
infoStr The information string. The maximum string length is VDP_OVERLAY_INFO_STR_MAX_LEN bytes, including the NULL terminator. The
information string can contain the following macros:
Macro Definition
S(FPS) FPS or image format (default)
S(IMAGE_SIZE) Source image size (WxH)
S(IMAGE_ASPECT) Source image aspect ratio (X.XX)
S(IMAGE_FORMAT) Source image format
S(OVERLAY_ID) Overlay ID
S(OVERLAY_POS) Overlay position (X,Y)
S(OVERLAY_SIZE) Overlay size (WxH)
S(OVERLAY_ASPECT) Overlay image aspect ratio (X.XX)
S(OVERLAY_LAYER) Overlay layer
S(OVERLAY_LAYOUT) Overlay layout mode
S(OVERLAY_SURFACE) Overlay surface type
S(OVERLAY_FPS) Overlay frame rate
S(OVERLAY_FRAME_NUM) Overlay frame number
S(HORIZON_FPS) Horizon client frame rate
replaced S(VIEW_FPS) in release 2503
S(HORIZON_FRAME_NUM) Horizon client frame number
replaced S(VIEW_FRAME_NUM) in release
2503
S(HORIZON_WINDOW_SIZE) Horizon client window size
replaced S(VIEW_WINDOW_SIZE) in release
2503
S(HORIZON_PROTOCOL) Horizon client protocol (Blast/PColP)
replaced S(VIEW_PROTOCOL) in release 2503
S(REMOTE_DESKTOP_SIZE) Horizon remote desktop size (WxH)
S(TIME) Current time
S(DATE) Current date

The following escape characters are recognized, assuming that the string is read from a file or the registry.
When hardcoding the information string in C/C++ code, you must also escape the backslash character itself.

Escape Character Definition
\n New line; the LF character ("\n' in C/C++) is also a new line
\$ Dollar sign

\\ Backslash

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.
VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay APl was not initialized.
VDP_OVERLAY_ERROR_INVALID_PARAMETER One of the parameter entries was invalid.
VDP_OVERLAY_ERROR_WINDOW_NOT_REGISTERED The given windowld has not been registered with the Overlay API.

VDPOverlayClient_Interface Functions

With VDPOverlayClient_Interface functions, you can work with an overlay, send a message to the guest-side plug-in,

and release all allocated resources.

v1.Exit

Performs cleanup operations and releases all allocated resources.

This function is a member of VDPOverlayClient_Interface.

Method Signature
VDPOverlay_Error (*v1.Exit)(VDPOverlayClient_Contextld contextld);

Parameters

Parameter Description

contextld The ID returned from VDPOverlayClient.v1Init().

Return Values

Value Description
VDP_OVERLAY_ERROR_SUCCESS Overlay API was properly shut down.
VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.
VDP_OVERLAY_ERROR_INVALID_PARAMETER contextld was invalid.
v1.GetlInfo

Retrieves the current information about the overlay.

This function is a member of VDPOverlayClient_Interface.

Method Signature
VDPOverlay_Error (*v1.GetInfo)(VDPOverlayClient_Contextld contextld, VDPOverlay_Windowld windowld, VDPOverlayClient_OverlayInfo*
pOverlaylnfo);

Parameters

Parameter Description
contextld The ID returned from VDPOverlayClient.v1Init().
windowld Window ID that was cached from a previous OnWindowRegistered() event.

pOverlaylnfo A pointer to a VDPOverlayClient_OverlayInfo structure which will be filled in with information about the overlay.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Current information retrieved.

VDP_OVERLAP_ERROR_NOT_INITIALIZED Overlay APl was not initialized.
VDP_OVERLAY_ERROR_INVALID_PARAMETER The contextld or windowld parameter was invalid, or pOverlayinfo was NULL

v1.Init for the Client-Side Library

This function initializes the client-side overlay library. This method must be the first method called in the client-side
Overlay API.

This function is a member of VDPOverlayClient_Interface.

Method Signature
VDPOverlay_Error (*v1.Init)(const VDPOverlayClient_Sink* sink, void* userData, VDPOverlayClient_Contextld* pContextld);

Parameters

Parameter Description

sink Function pointers called when events are generated by the Overlay API.
userData Parameter that is passed to sink callbacks. Can be NULL.

pContextld Returns an ID that identifies the instance of the API for this plug-in instance.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Overlay client API was initialized.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Internal Horizon Session Enhancement initialization error.
VDP_OVERLAY_ERROR_INVALID_PARAMETER The sink or pContextld parameter is NULL or sink reported an invalid version.

VDP_OVERLAY_ERROR_ALLOCATION_ERROR Internal system error.

v1.SendMsg

Sends a message to the guest-side plug-in. The guest's OnUserMsg() event handler is called with the message.

This function is a member of VDPOverlayClient_Interface.

Method Signature
VDPOverlay_Error (*v1.SendMsg)(VDPOverlayClient_Contextld contextld, VDPOverlay_Windowld windowld, void* msg, uint32 msgLen);

Parameters

Parameter Description

contextld The ID returned from VDPOverlayClient.v1.Init().

Window ID that was cached from a previous OnWindowRegistered() event. You may also pass VDP_OVERLAY_WINDOW_ID_NONE

windowld
if the message is not directed to a particular window.
msg A pointer to a buffer that contains the message.
msglen Size of the msg buffer in bytes. The maximum message length is VDP_OVERLAY_USER_MSG_MAX_LEN bytes.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS The message was sent.

VDP_OVERLAP_ERROR_NOT_INITIALIZED Overlay APl was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The contextld or windowld parameter was invalid, or there was an error with msg.
vl.Update

Updates the overlay with a new image. The updated image is displayed when the next frame is drawn.

This function is a member of VDPOverlayClient_Interface.

Method Signature
VDPOverlay_Error (*v1.Update)(VDPOverlayClient_Contextld contextld, VDPOverlay_Windowld windowld, void* plmage, int32 width, int32
height, int32 pitch, Bool copylmage);

Parameters

Parameter Description

contextld The ID returned from VDPOverlayClient.v1.Init().

windowld Window ID that was received from a previous OnWindowRegistered() event.

plmage A pointer to the RGBX pixels to copy to the overlay.

Parameter Description

width Width, in pixels, of the image pointed to by pImage. If the width of the image does not match the width of the overlay, the
given image is drawn according the layout mode of the overlay.

height Height, in pixels, of the image pointed to by plmage. If the height of the image does not match the height of overlay, the given
image is drawn according the layout mode of the overlay.

pitch Number of bytes that a single row of the image occupies. In the normal case, for BGRX images, this value is width multiplied by
4.
copylmage If TRUE, a copy of the image data is made. If FALSE, no copy is made and the image data must remain valid until another call to

VDPOverlayClient_Update() is made.

Return Values

Value Description
VDP_OVERLAY_ERROR_SUCCESS Image was updated.
VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay APl was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The contextld, windowlID, or plmage parameter was invalid.

v2.CreateOverlay
Creates a local overlay.

The overlay is not tied to a window on the guest (such an overlay is referred to as a "guest created overlay"). Locally
created overlays give the client complete control over the overlay but also require the client to do more of the
work.

This function is a member of VDPOverlayClient_Interface.

Method Signature
VDPOverlay_Error (*v2.CreateOverlay)(VDPOverlayClient_Contextld contextld, VDPOverlay_Overlayld* pOverlayld);

Parameters
Parameter Description
contextld The ID returned from VDPOverlayClient.v1.Init().

Returns a VDPOverlay_Overlayld that can be used to set properties on the overlay. This ID may also be passed to functions

Overlayld
pLveriay that take a VDPOverlay_Windowld, for example, Update(), GetInfo(), and so on.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay APl was not initialized.

Value Description

VDP_OVERLAY_ERROR_INVALID_PARAMETER The contextld parameter was invalid, or the pOverlayld is NULL.

VDP_OVERLAY_ERROR_ALLOCATION_ERROR The system fails to allocate the required memory or system resource to handle the
call.

VDP_OVERLAY_ERROR_NO_MORE_OVERLAYS This error is returned when too many overlays have been created.

v2.DestroyOverlay
Destroys a local overlay.
All the resources associated with the overlay are released. This function cannot be called on guest-created overlays.

This function is a member of VDPOverlayClient_Interface.

Method Signature
VDPOverlay_Error (*v2.DestroyOverlay)(VDPOverlayClient_Contextld contextld, VDPOverlay_Overlayld overlayld);

Parameters

Parameter Description
contextld The ID returned from VDPOverlayClient.v1.Init().

overlayld An overlay ID that was returned from a previous call to CreateOverlay().

Return Values

Value Description
VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.
VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay APl was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The contextld or overlayld parameter was invalid.

VDP_OVERLAY_ERROR_NOT_LOCAL_OVERLAY The overlayld of a guest-side overlay was passed to a function that can only be
called on a local overlay.

v2.DisableOverlay
Deactivates an overlay.

Deactivating an overlay is a lightweight way to hide an overlay. Unlike DestroyOverlay(), resources used to maintain
the overlay are not released.

This function is a member of VDPOverlayClient_Interface.

Method Signature
VDPOverlay_Error (*v2.DisableOverlay)(VDPOverlayClient_Contextld contextld, VDPOverlay_Windowld windowld);

Parameters

Parameter Description
contextld The ID returned from VDPOverlayClient.v1.Init().

windowld A window ID that was cached from a previous OnWindowRegistered() event.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.
VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay APl was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The contextld or windowlID parameter was invalid.
VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR There is an error with a low-level library. This error code should be treated as

similar to INVALID_PARAMETER.

v2.EnableOverlay
Activates an overlay that was previously deactivated.
An overlay can be deactivated if either the guest or client calls DisableOverlay() for the given window ID.

This function is a member of VDPOverlayClient_Interface.

Method Signature
VDPOverlay_Error (*v2.EnableOverlay)(VDPOverlayClient_Contextld contextld, VDPOverlay_WindowId windowlId);

Parameters

Parameter Description
contextld The ID returned from VDPOverlayClient.v1.Init().

windowld A window ID that was cached from a previous OnWindowRegistered() event.

Return Values

Value Description
VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.
VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay APl was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The contextld or windowld parameter was invalid.

VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR There is an error with a low-level library. This error code should be treated as

similar to INVALID_PARAMETER.

v2.GetInfo

Retrieves current information about the overlay.
This function is a member of VDPOverlayClient_Interface.
Method Signature

VDPOverlay_Error (*v2.GetInfo)(VDPOverlayClient_Contextld contextld, VDPOverlay_Windowld windowld, VDPOverlayClient_OverlayInfo*
pOverlaylnfo);

Parameters

Parameter Description

contextld The ID returned from VDPOverlayClient.v1.Init().

windowld Window ID that was cached from a previous OnWindowRegistered() event.

pOverlaylnfo A pointer to a VDPOverlayClient_Overlayinfo structure which will be filled in with information about the overlay.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Current information retrieved.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay APl was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The contextld or windowID parameter was invalid, or pOverlaylnfo was NULL.
v2.InitLocal

Initializes the client-side overlay library for use with local overlays only.

The overhead of creating an RPC connection to track guest side windows is not performed. You do not need to call
this function if you have already called v1.Init().

This function is a member of VDPOverlayClient_Interface.

Method Signature
VDPOverlay_Error (*v1.InitLocal)(const VDPOverlayClient_Sink* sink, void* userData, VDPOverlayClient_Contextld* pContextld);

Parameters

Parameter Description

sink Contains the function pointers that are called when events are generated by the Overlay library.

userData The parameter that is passed to event handler whenever an event is delivered.

pContextld Returns an ID that is used to identify the instance of the API. This ID must be passed to all other API functions. This ID is also

passed when calling the sink handlers.

Return Values

Value

VDP_OVERLAY_ERROR_SUCCESS
VDP_OVERLAY_ERROR_NOT_INITIALIZED
VDP_OVERLAY_ERROR_INVALID_PARAMETER

VDP_OVERLAY_ERROR_ALLOCATION_ERROR

v2.SetClipRegion

Sets the clipping region on the overlay.

Description

No error. The function was successful.

Overlay APl was not initialized.

The sink or userData parameter was invalid, or pContextld is NULL.

The system fails to allocate the required memory or system resource to handle the
call.

This function cannot be called on guest-created overlays.

This function is a member of VDPOverlayClient_Interface.

Method Signature

VDPOverlay_Error (*v2.SetClipRegion)(VDPOverlayClient_Contextld contextld, VDPOverlay_Overlayld overlayld, VMRect* pClipRects, int32

nClipRects);

Parameters

Parameter Description

contextld The ID returned from VDPOverlayClient.v1.Init().

overlayld An overlay ID that was returned from a previous call to CreateOverlay().

pClipRects An array of VMRect's that describe the visible area of the overlay. The clipping information is relative to the screen. For example,
0,0 is the top-left corner of the screen. This means that the clipping information describes a specific area of the screen that
does not change when the overlay is moved. A copy of the VMRect array is made so that the caller does not have to maintain
the memory.

nClipRects The number of VMRects in the pClipRects array. Passing the value of 0 for nClipRects removes the clip region.

Return Values

Value

VDP_OVERLAY_ERROR_SUCCESS

VDP_OVERLAY_ERROR_NOT_INITIALIZED

VDP_OVERLAY_ERROR_INVALID_PARAMETER

Description

No error. The function was successful.

Overlay APl was not initialized.

The contextld or overlayld parameter was invalid, or pClipRects is NULL.

VDP_OVERLAY_ERROR_NOT_LOCAL_OVERLAY The overlayld of a guest-side overlay was passed to a function that can only be
called on a local overlay.

VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR There is an error with a low-level library. This error code should be treated as
similar to INVALID_PARAMETER.

v2.SetColorkey

Sets the color key on a local overlay.

Note The use of color keys is discouraged because they do not work well with the Blast protocol. To limit the area

of the guest Ul for rendering the overlay, use v2.SetClipRegion instead.

This function cannot be called on guest-created overlays.

This function is a member of VDPOverlayClient_Interface.

Method Signature

VDPOverlay_Error (*v2.SetColorkey)(VDPOverlayClient_Contextld contextld, VDPOverlay_Overlayld overlayld, uint32 colorkey);

Parameters

Parameter Description

contextld The ID returned from VDPOverlayClient.va.Init().
overlayld An overlay ID that was returned from a previous call to CreateOverlay().
colorkey An RGB value that will limit the area of the guest Ul where the overlay is drawn. When a color key is set on an overlay only the

pixels on the guest's Ul that match the color key value will be updated. It is the caller's responsibility to draw the color key to an
area on the guest's desktop that corresponds to the position of the overlay as set by SetPosition(). Passing
VDP_OVERLAY_COLORKEY_NONE will remove the color key from the overlay.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.
VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay APl was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The contextld, overlayld or colorkey parameter was invalid.
VDP_OVERLAY_ERROR_NOT_LOCAL_OVERLAY The overlayld of a guest-side overlay was passed to a function that can only be

called on a local overlay.

VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR There is an error with a low-level library. This error code should be treated as
similar to INVALID_PARAMETER.

v2.SetLayer
Sets the layer on a local overlay.
This function cannot be called on guest-created overlays.

This function is a member of VDPOverlayClient_Interface.

Method Signature
VDPOverlay_Error (*v2.SetLayer)(VDPOverlayClient_Contextld contextld, VDPOverlay_Overlayld overlayld, uint32 layer);

Parameters

Parameter Description

contextld The ID returned from VDPOverlayClient.v1.Init().
overlayld An overlay ID that was returned from a previous call to CreateOverlay().
layer The layer of the overlay. Overlays with a higher layer value will be on top of overlays with a lower layer value. If two overlays

have the same layer value the overlay created last will be on top.

Return Values

Value Description
VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.
VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay APl was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The contextld or overlayld parameter was invalid.

VDP_OVERLAY_ERROR_NOT_LOCAL_OVERLAY The overlayld of a guest-side overlay was passed to a function that can only be
called on a local overlay.

VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR There is an error with a low-level library. This error code should be treated as
similar to INVALID_PARAMETER.

v2.SetLayoutMode
Sets the current layout mode for the overlay.

The layout mode is used to determine how an image is drawn, for example, scaled, cropped, and so on, when the
size of the image doesn't match the size of the overlay.

This function is a member of VDPOverlayClient_Interface.
Method Signature

VDPOverlay_Error (*v2.SetLayoutMode)(VDPOverlayClient_Contextld contextld, VDPOverlay_Windowld windowld,
VDPOverlay_LayoutMode layoutMode);

Parameters

Parameter

contextld

windowld

layoutMode

Description

The ID returned from VDPOverlayClient.v1.Init().
A window ID that was cached from a previous OnWindowRegistered() event.
Determines how the image is drawn. This can be one of the following VDPOverlay_LayoutMode values:

VDP_OVERLAY_LAYOUT_CENTER

The image will be drawn centered in the overlay and clipped to the size of the overlay. No scaling will take place.

VDP_OVERLAY_LAYOUT_TILE
The image will be tiled to fill the overlay. The image is not scaled but will be clipped on the right/bottom edges of the
overlay.

VDP_OVERLAY_LAYOUT_SCALE / VDP_OVERLAY_LAYOUT_SCALE_SHRINK_ONLY

The image will be drawn to fill the entire overlay. No attempt at maintaining the aspect ratio of the image is made.

VDP_OVERLAY_LAYOUT_CROP / VDP_OVERLAY_LAYOUT_CROP_SHRINK_ONLY

The image will be scaled to fill the entire overlay while maintaining the aspect ratio. Parts of the image will be clipped if

necessary.

VDP_OVERLAY_LAYOUT_LETTERBOX / VDP_OVERLAY_LAYOUT_LETTERBOX_SHRINK_ONLY

The image will be scaled such that either the width or height of image will match the width/height of the overlay. The other
dimension will be scaled to maintain the aspect ratio. No part of the image will be clipped but the image may not fill the

entire overlay.

VDP_OVERLAY_LAYOUT_MULTIPLE_CENTER / VDP_OVERLAY_LAYOUT_MULTIPLE_CORNER

Multiple mode splits the overlay into 9 equal-sized boxes (like a tic-tac-toe board). The image is then scaled to fit into the
center and corner boxes. This mode can be combined with any of the basic layout modes to determine how the image is

scaled to fit in the box.

If, after applying the layout mode, the image doesn't fill the entire box,

VDP_OVERLAY_LAYOUT_MULTIPLE_CENTER places the image in the center of each box and
VDP_OVERLAY_LAYOUT_MULTIPLE_CORNER justifies the image within each box to the nearest corner of the overlay. When
combined with basic layout modes that always fill the overlay (e.g.

VDP_OVERLAY_LAYOUT_SCALE and VDP_OVERLAY_LAYOUT _TILE), the multiple modes
VDP_OVERLAY_LAYOUT_MULTIPLE_CENTER and VDP_OVERLAY_LAYOUT_MULTIPLE_CORNER behave the same.

VDP_OVERLAY_LAYOUT_TO_MULTIPLE (multipleMode, basicMode)

Where multipleMode must be either VDP_OVERLAY_LAYOUT_MULTIPLE_CENTER or
VDP_OVERLAY_LAYOUT_MULTIPLE_CORNER, and basicMode must be one of the basic layout modes listed earlier in this
table.

VDP_OVERLAY_LAYOUT_TO_MULTIPLE returns a layout mode from the given multiple and basic layout modes.

Return Values

Value

VDP_OVERLAY_ERROR_SUCCESS
VDP_OVERLAY_ERROR_NOT_INITIALIZED
VDP_OVERLAY_ERROR_INVALID_PARAMETER

VDP_OVERLAY_ERROR_NOT_LOCAL_OVERLAY

VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR

v2.SetPosition

Sets the position of a local overlay.

Description

No error. The function was successful.

Overlay APl was not initialized.

The contextld or windowID parameter was invalid.

The overlayld of a guest-side overlay was passed to a function that can only be
called on a local overlay.

There is an error with a low-level library. This error code should be treated as
similar to INVALID_PARAMETER.

This function cannot be called on guest-created overlays.

This function is a member of VDPOverlayClient_Interface.

Method Signature

VDPOverlay_Error (*v2.SetPosition)(VDPOverlayClient_Contextld contextld, VDPOverlay_Overlayld overlayld, int32 x, int32 y);

Parameters

Parameter Description

contextld The ID returned from VDPOverlayClient.v1.Init().

overlayld An overlay ID that was returned from a previous call to CreateOverlay().

The position of the overlay. The position is specified as the upper-left corner of the

X,y . .
overlay in guest Ul coordinates.

Return Values

Value

VDP_OVERLAY_ERROR_SUCCESS

VDP_OVERLAY_ERROR_NOT_INITIALIZED

VDP_OVERLAY_ERROR_INVALID_PARAMETER

VDP_OVERLAY_ERROR_NOT_LOCAL_OVERLAY

Description

No error. The function was successful.

Overlay APl was not initialized.

The contextld or overlaylD parameter was invalid.

The overlayld of a guest-side overlay was passed to a function that can only be
called on a local overlay.

Value Description

VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR There is an error with a low-level library. This error code should be treated as
similar to INVALID_PARAMETER.

v2.SetSize

Sets the size of a local overlay.
This function cannot be called on guest-created overlays.

This function is a member of VDPOverlayClient_Interface.

Method Signature
VDPOverlay_Error (*v2.SetSize)(VDPOverlayClient_Contextld contextld, VDPOverlay_Overlayld overlayld, int32 width, int32 height);

Parameters

Parameter Description
contextld The ID returned from VDPOverlayClient.v1.Init().

overlayld An overlay ID that was returned from a previous call to CreateOverlay().

The size of the overlay in pixels. If the size of the image specified in Update() does not match the size of the overlay, the image is

idth, height e
wi c18 drawn as specified by the layout mode.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.
VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay APl was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The contextld or overlaylD parameter was invalid.
VDP_OVERLAY_ERROR_NOT_LOCAL_OVERLAY The overlayld of a guest-side overlay was passed to a function that can only be

called on a local overlay.

VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR There is an error with a low-level library. This error code should be treated as
similar to INVALID_PARAMETER.

v2.Update
Updates the overlay with a new image. The updated image is displayed when the next frame is drawn.

This function is a member of VDPOverlayClient_Interface.

Method Signature
VDPOverlay_Error (*v2.Update)(VDPOverlayClient_Contextld contextld, VDPOverlay_Windowld windowld, void* plmage, int32 width, int32
height, int32 pitch, VDPOverlay_ImageFormat format, uint32 flags);

Parameters

Parameter Description

contextld The ID returned from VDPOverlayClient.v1.Init().

windowld Window ID that was received from a previous OnWindowRegistered() event.

plmage a pointer to the pixels to copy to the overlay.
(] If the VDP_OVERLAY_UPDATE_FLAG_SHARED_SURFACE flag is set pImage is the handle of a DirectX shared surface.
(] If the format is a YUV format then plmage must point to a VDPOverlayClient_YUVImageData structure.

width Width, in pixels, of the image pointed to by pImage. If the width of the image does not match the width of the overlay, the given
image is drawn according the layout mode of the overlay.

height Height, in pixels, of the image pointed to by pImage. If the height of the image does not match the height of overlay, the given
image is drawn according the layout mode of the overlay.

pitch Number of bytes that a single row of the image occupies. In the normal case, for BGRX images, this value is width multiplied by
4.

format The pixel format of the image. This is one of the values in VDPOverlay_ImageFormat.

flags m VDP_OVERLAY_UPDATE_FLAG_NONE - Place holder denoting that no flags are being passed.

m VDP_OVERLAY_UPDATE_FLAG_COPY_IMAGE - If set, a copy of the image data is made. If FALSE, no copy is made and the

image data must remain valid until another call to VDPOverlayClient_Interface.vl/v2.Update() is made.

® VDP_OVERLAY_UPDATE_FLAG_SHARED_SURFACE - Allows a DirectX surface handle to be passed in place of a pointer to the
image. Shared surfaces are not supported on all video cards or with all image formats, so the application must be prepared
to fall back to not using this flag and passing a pointer to the image in system memory.

® VDP_OVERLAY_UPDATE_FLAG_EXCLUDE_FROM_READ_BACK - The overlay is not included as part of image returned from
VDPScreenCapture_Interface.v1l.ReadBackScreen().

B VDP_OVERLAY_UPDATE_FLAG_WRITE_IMAGE_FILE - If set the image is written to %TEMP%\Overlay<id>-<frame#>.png.
This can be used when debugging to verify the image given to VDPOverlayClient_Interface.vl/v2.Update().

Return Values

Value Description
VDP_OVERLAY_ERROR_SUCCESS Image was updated.
VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay APl was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The contextld, windowID, or pimage parameter was invalid.

v3.GetTopology
Retrieves the topology of the Horizon desktop.

This function is a member of VDPOverlayClient_Interface.

Method Signature
VDPOverlay_Error (*v3.GetTopology)(VDPOverlayClient_Contextld contextld, VDPOverlay_Rect* desktopBounds, int32* pszDesktopTopology,
VDPOverlay_Rect* desktopTopology);

Parameters
Parameter Description
contextld The ID returned from VDPOverlayClient.v1.Init().
Returns a rectangle which contains the bounding box for the entire Horizon desktop. Pass NULL to avoid returning this
desktopBounds

information.

A pointer to an int32. On input the value is the size of the desktopTopology array which will return the Horizon desktop

topology. On output the value is the number of rectangles required to hold the entire desktop topology. This value may
pszDesktopTopology be larger than the size passed in if the

desktopTopology array is too small to hold the entire desktop topology. Passing NULL is treated the same as

*pszDesktopTopology ==

A pointer to an array which returns the rectangles that make up the Horizon desktop topology. Can be NULL only if

desktopTopol
esktopTopology pszDesktopTopology is NULL or *pszDesktopTopology == 0.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Current information retrieved

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay APl was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER One of the parameter entries was invalid.
VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR There is an error with a low-level library. This error code should be treated as

similar to INVALID_PARAMETER.

v4.GetInfoString
Gets the current information string for the overlay as set by v4.SetInfoString().

This function is a member of VDPOverlayClient_Interface.

Method Signature
VDPOverlay_Error (*v4.GetInfoString)(VDPOverlayClient_Contextld contextld, VDPOverlay_Windowld windowld, char* infoStr, int32
infoStrSize);

Parameters

Parameter Description

contextld The ID returned from VDPOverlayClient.v1.Init().

windowld The window ID that was cached from a prior OnWindowRegistered() event.

Parameter Description

infoStr A pointer to a buffer that is filled with the current information string.

infoStrSize The size of the infoStr buffer.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Current information retrieved.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay APl was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER One of the parameter entries was invalid.
VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR There is an error with a low-level library. This error code should be treated as

similar to INVALID_PARAMETER.

v4.GetInfoStringProperties
Gets the current information string for the overlay as set by v4.SetInfoString().

This function is a member of VDPOverlayClient_Interface.

Method Signature
VDPOverlay_Error (*v4.GetInfoStringProperties)(VDPOverlayClient_Contextld contextld, VDPOverlay_Windowld windowld,
VDPOverlayClient_InfoStringProperties *pProperties);

Parameters

Parameter Description

contextld The ID returned from VDPOverlayClient.va.Init().

windowld The window ID that was cached from a prior OnWindowRegistered() event.
pProperties A pointer to a VDPOverlayClient_InfoStringProperties structure.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Current information retrieved.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay APl was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER One of the parameter entries was invalid.
VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR There is an error with a low-level library. This error code should be treated as

similar to INVALID_PARAMETER.

v4.SetInfoString

Sets a string that is rendered on top of the overlay. The string can contain arbitrary information which can assist
with closed captioning or debugging information.

This function is a member of VDPOverlayClient_Interface.

Method Signature
VDPOverlay_Error (*v4.SetInfoString)(VDPOverlayClient_Contextld contextld, VDPOverlay_Windowld windowld, const char* infoStr);

Parameters

Parameter Description

contextid The ID returned from VDPOverlayClient.v1.Init().
windowld The window ID that was cached from a prior OnWindowRegistered() event.
infoStr The information string. The maximum string length is VDP_OVERLAY_INFO_STR_MAX_LEN bytes, including the NULL

terminator.
The information string can contain the following macros:

Macro Definition

S(FPS)
FPS or image format (default)

S(IMAGE_SIZE)
Source image size (WxH)

$(IMAGE_ASPECT) Source image aspect ratio (X.XX)

S(IMAGE_FORMAT) .
Source image format

S(OVERLAY_ID)
Overlay ID

S(OVERLAY_POS)
Overlay position (X,Y)

$(OVERLAY_SIZE)
Overlay size (WxH)

S(OVERLAY_ASPECT) Overlay image aspect ratio (X.XX)

S(OVERLAY_LAYER)
Overlay layer

S(OVERLAY_LAYOUT)
Overlay layout mode

S(OVERLAY_SURFACE)
Overlay surface type

S(OVERLAY_FPS)
Overlay frame rate

S(OVERLAY_FRAME_NUM)
Overlay frame number

S(HORIZON_FPS) . .
replaced S(VIEW_FPS) in release 2503 Horizon client frame rate

Parameter Description

S(HORIZON_FRAME_NUM)
replaced S(VIEW_FRAME_NUM) in release 2503

$(HORIZON_WINDOW_SIZE)
replaced S(VIEW_WINDOW_SIZE) in release 2503

$(HORIZON_PROTOCOL)
replaced S(VIEW_PROTOCOL) in release 2503

S(REMOTE_DESKTOP_SIZE)

S(TIME)

$(DATE)

Horizon client frame number

Horizon client window size

Horizon client protocol (Blast/PColP)

Horizon remote desktop size (WxH)

Current time

Current date

The following escape characters are recognized, assuming that the string is read from a file or the registry.

When hardcoding the information string in C/C++ code, you must also escape the backslash character itself.

Escape Character

Definition

\n
New line; the LF character ("\n' in C/C++) is also a new line
\$
Dollar sign
\\
Backslash
Return Values
Value Description

VDP_OVERLAY_ERROR_SUCCESS
VDP_OVERLAY_ERROR_NOT_INITIALIZED
VDP_OVERLAY_ERROR_INVALID_PARAMETER

VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR

v4.SetInfoStringProperties

No error. The function was successful.

Overlay APl was not initialized.

One of the parameter entries was invalid.

There is an error with a low-level library. This error code should be treated as
similar to INVALID_PARAMETER.

Sets properties for how the information string is rendered.

This function is a member of VDPOverlayClient_Interface.

Method Signature

VDPOverlay_Error (*v4.SetInfoStringProperties)(VDPOverlayClient_Contextld contextld, VDPOverlay_Windowld windowld,

VDPOverlayClient_InfoStringProperties *pProperties);

Parameters

Parameter Description

contextld The ID returned from VDPOverlayClient.v1.Init().

windowld The window ID that was cached from a prior OnWindowRegistered() event.

pProperties A pointer to a VDPOverlayClient_InfoStringProperties structure. As a best practice, initialize the structure by calling

v4.GetlInfoStringProperties() if there are properties that you don't want to change.

Return Values

Value Description
VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.
VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay APl was not initialized.
VDP_OVERLAY_ERROR_INVALID_PARAMETER One of the parameter entries was invalid.

There is an error with a low-level library. This error code should be treated as

VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR similar to INVALID_PARAMETER.

v5.SetRemoteWindowld

Associates a local overlay with a remote window.

Guest side overlays are automatically associated with the remote window they are tracking. An error is returned
when trying to change the remote window ID for a guest side overlay.

Client side local overlays have an associated remote window ID of 0 by default.

When using the VDPScreenCapture ReadBackWindow function knowing which overlays are associated with a
particular remote window is helpful in knowing which overlays to include and/or exclude in the image returned.

Only overlays with a matching remote window ID are eligible to be included in the image returned from
ReadBackWindow() according to the VDPScreenCapture_OverlayOptions parameter.

Overlays with a non-matching remote window ID are always excluded from the image returned by
ReadBackWindow().

This function is a member of VDPOverlayClient_Interface.
Method Signature

VDPOverlay_Error (*v5.SetRemoteWindowl!d)(VDPOverlayClient_Contextld contextld, VDPOverlay_Overlayld overlayld, uint64
hRemoteWindow);

Parameters

Parameter Description

contextld The ID returned from VDPOverlayClient.v1.Init().

overlayld An overlay ID that was returned from a previous call to v2.CreateOverlay().

hRemoteWindow The operating system window identifier to associate with this overlay.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS The operating system window identifier is associated with the local overlay.
VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay APl was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER One of the parameter entries was invalid.
VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR There is an error with a low-level library. This error code should be treated as

similar to INVALID_PARAMETER.

v5.GetRemoteWindowld

Returns the remote desktop window ID associated with an overlay.

Guest side overlays are automatically associated with the remote window they are tracking. An error is returned
when trying to change the remote window ID for a guest side overlay.

Client side local overlays have an associated remote window ID of 0 by default and can only be changed by calling
v5.SetRemoteWindowld().

This function is a member of VDPOverlayClient_Interface.

Method Signature
VDPOverlay_Error (*v5.GetRemoteWindowld)(VDPOverlayClient_Contextld contextld, VDPOverlay_Overlayld overlayld, uint64
*phRemoteWindow);

Parameters

Parameter Description

contextld The ID returned from VDPOverlayClient.v1.Init().

overlayld An overlay ID that was returned from a previous call to v2.CreateOverlay().

Returns the operating system window identifier associated with the local

hRemoteWindow
P overlay. Returns 0 if there isn't a remote window associated with the overlay.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS The operating system window identifier is associated with the local overlay.
VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay APl was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER One of the parameter entries was invalid.
VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR There is an error with a low-level library. This error code should be treated as

similar to INVALID_PARAMETER.

VDPScreenCapture Functions

With VDPScreenCapture_Interface functions, you can access the image of the entire remote desktop, an area of the
desktop or the windows that belong to a particular application. The vdpScreenCapture.h header file defines the set
of functions to use in order to support screen capture functionality in an application.

v1.Init

This function initializes the client-side overlay library. This method must be the first method called in the client-side
Overlay API.

This function is a member of VDPScreenCapture_Interface.

Method Signature

VDPScreenCapture_Error (*v1.Init)(const VDPScreenCapture_Sink* sink, void* userData, VDPScreenCapture_Contextld * pContextld);

Parameters

Parameter Description

sink Function pointers called when events are generated by the Screen Capture API.
userData Parameter that is passed to sink callbacks. Can be NULL.

pContextld Returns an ID that identifies the instance of the API for this plug-in instance.

Return Values

Value Description

VDP_SCREEN_CAPTURE_ERROR_SUCCESS Screen Capture API was initialized.

The Screen Capture API has to exchange information with the Horizon Agent
running on the remote desktop before it is ready to be used. Calling this function
before a connection is in place or even too quickly after a connection has been
made will result in this error. Try calling the function again after a few seconds.

VDP_SCREEN_CAPTURE_ERROR_HOST_NOT_READY

VDP_SCREEN_CAPTURE_ERROR_INVALID_PARAMETER The sink or pContextld parameter is NULL or sink reported an invalid version.

v1.Exit

Performs cleanup operations and releases all allocated resources.

This function is a member of VDPScreenCapture_Interface.

Method Signature

VDPScreenCapture_Error (*v1.Exit)(VDPScreenCapture_Contextld contextld);

Parameters

Parameter Description

contextld The ID returned from VDPScreenCapture.vi.Init().

Return Values

Value Description
VDP_SCREEN_CAPTURE_ERROR_SUCCESS Screen Capture API was properly shut down.

VDP_SCREEN_CAPTURE_ERROR_INVALID_PARAMETER ~ contextid isinvalid.

vl.GetlLocalTopology
Retrieves the topology of the local Horizon client.

This function is a member of VDPScreenCapture_Interface.

Method Signature

VDPScreenCapture_Error (*v1.GetLocalTopology)(VDPScreenCapture_Contextld contextld, VDPScreenCapture_Rect* pBounds, int32*
pszTopology, VDPScreenCapture_Rect* pTopology);

Parameters

Parameter Description

contextld The ID returned from VDPScreenCapture.v1.Init().

Returns a rectangle which contains the bounding box for the entire Horizon

pBounds)
client. Pass NULL to avoid returning the information.

A pointer to an int32. On input the value is the size of the pTopology array
which will return the Horizon client topology. On output the value is the
pszTopology ~ number of rectangles required to hold the entire Horizon client topology; which
may be larger than the size passed in if the pTopology array is too small to hold
the entire topology. Passing NULL is treated the same as *pszTopology == 0.

A pointer to an array which returns the rectangles that make up the Horizon

Topol
plopology client topology. Can be NULL only if pszTopology is NULL or *pszTopology == 0.

Return Values

Value Description

VDP_SCREEN_CAPTURE_ERROR_SUCCESS The topology information was returned.

contextld is invalid, szTopology is < 0 or pTopology is NULL when

VDP_SCREEN_CAPTURE_ERROR_INVALID_PARAMETER
- - - - - szTopology > 0.

This function cannot be called when the Horizon client is in

VDP_SCREEN_CAPTURE_ERROR_NOT_ALLOWED_IN_APP_MODE .
- - - - - - - = application mode.

vl.GetRemoteTopology

Retrieves the topology of the remote desktop.

This function is a member of VDPScreenCapture_Interface.

Method Signature

VDPScreenCapture_Error (*v1.GetRemoteTopology)(VDPScreenCapture_Contextld contextld, VDPScreenCapture_Rect* pBounds, int32*
pszTopology, VDPScreenCapture_Rect* pTopology);

Parameters

Parameter Description

contextld The ID returned from VDPScreenCapture.v1.Init().

Returns a rectangle which contains the bounding box
pBounds for the entire remote desktop. Pass NULL to avoid
returning the information.

A pointer to an int32. On input the value is the size of
the pTopology array which will return the remote
desktop topology. On output the value is the number
of rectangles required to hold the entire remote
desktop topology; which may be larger than the size
passed in if the pTopology array is too small to hold
the entire topology. Passing NULL is treated the same
as *pszTopology == 0.

pszTopology

A pointer to an array which returns the rectangles that
pTopology make up the remote desktop topology. Can be NULL
only if pszTopology is NULL or *pszTopology == 0.

Return Values

Value Description

VDP_SCREEN_CAPTURE_ERROR_SUCCESS The topology information was returned.

contextld is invalid, szTopology is < 0 or pTopology was NULL when

VDP_SCREEN_CAPTURE_ERROR_INVALID_PARAMETER
_ - - - - szTopology > 0.

This function can not be called when the Horizon client is in

VDP_SCREEN_CAPTURE_ERROR_NOT_ALLOWED_IN_APP_MODE L
- - - - - - - = application mode.

v1.GetHostWindowByRect

Returns the host window ID that contains the given rectangle.
This function is a member of VDPScreenCapture_Interface.

Method Signature

VDPScreenCapture_Error (*v1.GetHostWindowByRect)(VDPScreenCapture_Contextld contextld, const VDPScreenCapture_Rect* pRect,
uintptr_t* pHostWindow);

Parameters

Parameter Description

contextld The ID returned from VDPScreenCapture.vi.Init().

The rectangle that determines which host window to
pRect return in local coordinates. The host window must
contain the entire rectangle.

Returns the host window ID (0 on error). The host
pHostWindow window ID can change while Horizon is running so it
should not be cached.

Return Values

Value Description

VDP_SCREEN_CAPTURE_ERROR_SUCCESS The host window ID was returned.

VDP_SCREEN_CAPTURE_ERROR_INVALID_PARAMETER contextld is invalid, pRect is NULL or pHostWindow is NULL.

This function can not be called when the Horizon client is in

VDP_SCREEN_CAPTURE_ERROR_NOT_ALLOWED_IN_APP_MODE s
- - - - - - - - application mode.

VDP_SCREEN_CAPTURE_ERROR_HOST_ERROR A host window was not found.

v1.GetHostWindowByPoint

Returns the host window ID that contains the given point.
This function is a member of VDPScreenCapture_Interface.

Method Signature

VDPScreenCapture_Error (*v1.GetHostWindowByPoint)(VDPScreenCapture_Contextld contextld, int32 x, int32y, uintptr_t*
pHostWindow);

Parameters
Parameter Description
contextld The ID returned from VDPScreenCapture.vi.Init().

The point that determines which host window to
X,y return in local coordinates. The host window must
contain this point.

Returns the host window ID (0 on error). The host
pHostWindow window ID can change while Horizon is running so it
should not be cached.

Return Values

Value Description

VDP_SCREEN_CAPTURE_ERROR_SUCCESS The host window ID was returned.

Value Description

VDP SCREEN CAPTURE ERROR INVALID PARAMETER contextld is invalid, pRect is NULL or pHostWindow is NULL.

This function can not be called when the Horizon client is in

VDP_SCREEN_CAPTURE_ERROR_NOT_ALLOWED_IN_APP_MODE L
- - - - - - - - application mode.

VDP_SCREEN_CAPTURE_ERROR_HOST_ERROR A host window was not found.

vl.MaplocalToRemoteRect

Maps a rectangle from local coordinates to remote coordinates.

This function is a member of VDPScreenCapture_Interface.

Method Signature

VDPScreenCapture_Error (*v1.MapLocalToRemoteRect)(VDPScreenCapture_Contextld contextld, const VDPScreenCapture_Rect*
pLocalRect, VDPScreenCapture_Rect* pRemoteRect);

Parameters

Parameter Description

contextld The ID returned from VDPScreenCapture.vi.Init().

The rectangle, in local coordinates, that is mapped to
pLocalRect remote coordinates. The rectangle can not span
multiple local topology rectangles.

pRemoteRect Returns the mapped rectangle in remote coordinates.

Return Values

Value Description
VDP_SCREEN_CAPTURE_ERROR_SUCCESS The local coordinates were mapped to remote coordinates.
VDP_SCREEN_CAPTURE_ERROR_INVALID_PARAMETER contextld is invalid, pLocalRect is NULL or pRemoteRect is NULL.

VDP_SCREEN_CAPTURE_ERROR_NOT_ALLOWED_IN_APP_MODE;rnh;ZZunChon can not be called when the Horizon client is in application

VDP_SCREEN_CAPTURE_ERROR_HOST_ERROR The local coordinates could not be mapped to remote coordinates.

vl.MapRemoteTolLocalRect

Maps a rectangle from remote coordinates to local coordinates.
This function is a member of VDPScreenCapture_Interface.

Method Signature

VDPScreenCapture_Error (*v1.MapRemoteToLocalRect)(VDPScreenCapture_Contextld contextld, const VDPScreenCapture_Rect*
pRemoteRect, VDPScreenCapture_Rect* pLocalRect);

Parameters

Parameter Description

contextld The ID returned from VDPScreenCapture.vi.Init().

The rectangle, in remote coordinates, that is mapped
pRemoteRect to local coordinates. The rectangle can not span
multiple remote topology rectangles.

pLocalRect Returns the mapped rectangle in local coordinates.

Return Values

Value Description

VDP_SCREEN_CAPTURE_ERROR_SUCCESS The remote coordinates were mapped to local coordinates.

VDP_SCREEN_CAPTURE_ERROR_INVALID_PARAMETER contextld is invalid, pRemoteRect is NULL or pLocalRect is NULL.

This function can not be called when the Horizon client is in

VDP_SCREEN_CAPTURE_ERROR_NOT_ALLOWED_IN_APP_MODE L
- - - - - - - - application mode.

VDP_SCREEN_CAPTURE_ERROR_HOST_ERROR The remote coordinates could not be mapped to local coordinates.

v2.I1sApplicationMode

Determines if the Horizon client is running in ‘Application Mode’. ‘Application Mode’ also known as ‘Unity Mode’ or
‘Seamless Windows’ runs an application on a remote desktop and only displays the windows for the application. If
not in ‘Application Mode’ the Horizon client is running in ‘Desktop Mode’ where the entire remote desktop is
displayed.

This function is a member of VDPScreenCapture_Interface.

Method Signature

VDPScreenCapture_Error (*v2.IsApplicationMode)(VDPScreenCapture_Contextld contextld, Bool* plsApplicationMode);

Parameters
Parameter Description
contextld The ID returned from VDPScreenCapture.v1.Init().

Returns TRUE if the Horizon Client is in
application mode.

Return Values

plsApplicationMode

Value Description

VDP_SCREEN_CAPTURE_ERROR_SUCCESS The application mode was returned.

contextld is invalid or plsApplicationMode

VDP_SCREEN_CAPTURE_ERROR_INVALID_PARAMETER is NULL

v2.ReadBackScreen

Returns an image with the remote desktop screen contents. When finished with the image it must be released by
calling v2.ReadBackRelease().

This function is a member of VDPScreenCapture_Interface.

Method Signature

VDPScreenCapture_Error (*v2.ReadBackScreen)(VDPScreenCapture_Contextld contextld, VDPScreenCapture_ReadBackParameters*
pParams, VDPScreenCapture_Imagelnfo* plmagelnfo);

Parameters

Parameter Description

contextld The ID returned from VDPScreenCapture.v1.Init().

The input parameters used to determine which part of

Parms
P the remote desktop to read.

The resulting image. You must release the image by
plmagelnfo calling v2.ReadBackRelease() with the handle returned
in VDPScreenCapture_Imagelnfo.vl.handle.

Return Values

Value Description

VDP_SCREEN_CAPTURE_ERROR_SUCCESS An image of the remote desktop screen was returned.

contextld is invalid, pParms is NULL, plmagelnfo is NULL or one of the

VDP_SCREEN_CAPTURE_ERROR_INVALID_PARAMETER .))
- - - - - values in pParms is not valid.

This function can not be called when the Horizon client is in

VDP_SCREEN_CAPTURE_ERROR_NOT_ALLOWED_IN_APP_MODE L
- - - - - - - - application mode.

There was an error when attempting to capture an image of the

VDP_SCREEN_CAPTURE_ERROR_HOST_ERROR
- - - - - remote desktop screen.

v2.ReadBackRelease

Releases resources held by the Horizon client to manage the image returned from v2.ReadBackScreen().

This function is a member of VDPScreenCapture_Interface.

Method Signature

VDPScreenCapture_Error (*v2.ReadBackRelease)(VDPScreenCapture_Contextld contextld, VDPScreenCapture_ImageHandle himage);

Parameters

Parameter Description

contextld The ID returned from VDPScreenCapture.v1.Init().

Parameter Description

The handle returned from v2.ReadBackScreen() in

hi
mage VDPScreenCapture_Imagelnfo.vl.handle.

Return Values

Value Description

VDP_SCREEN_CAPTURE_ERROR_SUCCESS The image was successfully released.

VDP_SCREEN_CAPTURE_ERROR_INVALID_PARAMETER contextld is invalid or himage is invalid.

This function can not be called when the Horizon client is in

VDP_SCREEN_CAPTURE_ERROR_NOT_ALLOWED_IN_APP_MODE L
- - - - - - - = application mode.

VDP_SCREEN_CAPTURE_ERROR_HOST_ERROR There was error when trying to release the image.

v3.IsReadBackWindowSupported

Determines if the ReadBackWindow interface is supported. The ReadBackWindow interface is dependent on the
protocol and the version of the Horizon Agent running on the remote desktop to function properly.

This function is a member of VDPScreenCapture_Interface.

Method Signature

VDPScreenCapture_Error (*v3.IsReadBackWindowSupported)();

Return Values

Value Description

VDP_SCREEN_CAPTURE_ERROR_SUCCESS The ReadBackWindow interface is supported.

The ReadBackWindow interface has to exchange information
with the Horizon Agent on the remote desktop before it is ready
VDP_SCREEN_CAPTURE_ERROR_READBACK_WINDOW_NOT_READY to be used. Calling this function before a connection is in place
or even too quickly after a connection has been made will result
in this error. Try calling the function again after a few seconds.

The ReadBackWindow interface requires the Blast protocol.

VDP_SCREEN_CAPTURE_ERROR_UNSUPPORTED_PROTOCOL . R e
- - - - - Attempts to use the interface with other protocols will fail.

The version of the Horizon Agent running on the remote desktop

VDP_SCREEN_CAPTURE_ERROR_UNSUPPORTED_AGENT . -
- - - - - does not support the ReadbackWindow interface.

v3.ReadBackWindowBegin

Starts tracking a remote window; e.g. a window on the remote desktop.

e The API requires some time to begin tracking a remote window. v3.ReadBackWindow() will return the
error code VDP_SCREEN_CAPTURE_ERROR_READBACK_WINDOW_NOT_READY until it is ready to return
images.

e The callback VDPScreenCapture_Sink.v3.0nReadBackWindowReady() will be called when the API is ready
to return images.

e The callback VDPScreenCapture_Sink.v3.0nReadBackWindowDestroyed() will be called if the remote
window is destroyed while being tracked.

e The callback VDPScreenCapture_Sink.v3.0nReadBackWindowRemoteError() will be called if there is an
error when setting up the tracking.

e When finished, you must release the resources used to track the remote window by calling
v3.ReadBackWindowEnd().

e If there are multiple calls to v3.ReadBackWindowBegin() to track the same window, each will return a
different ReadBackWindow handle. Each handle will have to released by calling
v3.ReadBackWindowEnd().

This function is a member of VDPScreenCapture_Interface.

Method Signature

VDPScreenCapture_Error (*v3.ReadBackWindowBegin)(VDPScreenCapture_Contextld contextld, VDPScreenCapture_HWND hWnd, uint32
processld, uint32 flags, VDPScreenCapture_ReadBackWindowHandle* phReadBackWindow);

Parameters

Parameter Description

contextld The ID returned from VDPScreenCapture.v1.Init().
hwnd The Windows HWND of the remote window to

track.

The Windows process ID associated with the
processld HWND. An error will be returned if the HWND
does not belong to this process.

Options to apply to the read back. See
flags VDP_SCREEN_CAPTURE_READBACK_BEGIN_*
flags for details.

Returns a handle to be used with
v3.ReadBackWindow() and
v3.ReadBackWindowEnd(). This handle is also
passed to the ReadBackWindow callbacks.

Return Values

phReadBackWindow

Value Description

The tracking of the remote window is being initialized by asking the
VDP_SCREEN_CAPTURE_ERROR_SUCCESS Horizon Agent to track the window. One of the sink functions will be
called to notify you if setting up the tracking was successful or not.

contextld is invalid, hWnd is O, processld is 0 or

VDP_SCREEN_CAPTURE_ERROR_INVALID_PARAMETER . .
- - - - - phReadBackWindow is NULL.

The ReadBackWindow interface requires the Blast protocol.

VDP_SCREEN_CAPTURE_ERROR_UNSUPPORTED_PROTOCOL :) -
- - - - - Attempts to use the interface with other protocols will fail.

The version of the Horizon Agent running on the remote desktop

VDP_SCREEN_CAPTURE_ERROR_UNSUPPORTED_AGENT
- - - - - does not support the ReadbackWindow interface.

VDP_SCREEN_CAPTURE_ERROR_UNSUPPORTED_OPTION One of the options in the flags parameter is not supported.

Value Description

VDP_SCREEN_CAPTURE_ERROR_HOST_ERROR There was an error in setting up the tracking of the remote window.

v3.ReadBackWindowEnd

Stops tracking a remote window and releases the associated resources.
This function is a member of VDPScreenCapture_Interface.

Method Signature

VDPScreenCapture_Error (*v3.ReadBackWindowEnd)(VDPScreenCapture_Contextld contextld, VDPScreenCapture_ReadBackWindowHandle
hReadBackWindow);

Parameters
Parameter Description
contextld The ID returned from VDPScreenCapture.v1.Init().

The handle returned from
v3.ReadBackWindowBegin().

Return Values

hReadBackWindow

Value Description

VDP_SCREEN_CAPTURE_ERROR_SUCCESS The window is no longer being tracked.

contextld is invalid or hReadBackWindow is

VDP_SCREEN_CAPTURE_ERROR_INVALID_PARAMETER invalid

There was an error when attempting to

VDP_SCREEN_CAPTURE_ERROR_HOST_ERROR . .
- - - - - stop tracking the window.

v3.ReadBackWindow

Returns an image with the remote window contents. When finished with the image it must be released by calling
v2.ReadBackRelease().

This function is a member of VDPScreenCapture_Interface.

Method Signature

VDPScreenCapture_Error (*v3.ReadBackWindow)(VDPScreenCapture_Contextld contextld, VDPScreenCapture_ReadBackWindowHandle
hReadBackWindow, VDPScreenCapture_ReadBackParameters* pParams, VDPScreenCapture_Imagelnfo* plmagelnfo);

Parameters

Parameter Description

contextld The ID returned from VDPScreenCapture.v1.Init().

Parameter Description

hReadBackWindow The handle returned from v3.ReadBackWindowBegin().

The input parameters used to determine which part of the window to read.
pParams Set VDPScreenCapture_ReadBackParameters.v1l.srcRect to zeros to read the
entire window.

The resulting image. You must release the image by calling
plmagelnfo v2.ReadBackRelease() with the handled return in
VDPScreenCapture_Imagelnfo.vl.handle.

Return Values

Value Description

VDP_SCREEN_CAPTURE_ERROR_SUCCESS The image was returned.

contextld is invalid, hReadBackWindow is invalid, pParams is
VDP_SCREEN_CAPTURE_ERROR_INVALID_PARAMETER NULL, plmagelnfo is NULL or one of the values in pParams is
invalid.

v3.ReadBackWindow() was called before the tracking is fully

VDP_SCREEN_CAPTURE_ERROR_READBACK_WINDOW_NOT_READY o
- - - - - - - initialized.

The window being tracked on the remote desktop has been

VDP_SCREEN_CAPTURE_ERROR_READBACK_WINDOW_DESTROYED
- - - - - - destroyed.

There was an error when attempting to capture the image of

VDP_SCREEN_CAPTURE_ERROR_HOST_ERROR)
- - - - - the window.

v4.GetReadBackCapabilities

Determines the ReadBack API's capabilities; e.g. which features / options are available. The features that are
available are determine by the Horizon Agent and Horizon Client versions as well as the remote protocol being
used.

This function is a member of VDPScreenCapture_Interface.

Method Signature

VDPScreenCapture_Error (*v4.GetReadBackCapabilities)(uint32* pReadbackCaps);

Parameters
Parameter Description

The return capabilities. See VDP_SCREEN_CAPTURE_READBACK_CAPS for
pReadbackCaps

more information.

Return Values

Value Description

VDP_SCREEN_CAPTURE_ERROR_SUCCESS The capabilities were returned.

The Screen Capture API has to exchange information with the

VDP_SCREEN_CAPTURE_ERROR_READBACK_WINDOW_NOT_READY .) o
- - - - - - - Horizon Agent running on the remote desktop before it is ready

Value Description

to be used. Calling this function before a connection is in place
or even too quickly after a connection has been made will
result in this error. Try calling the function again after a few
seconds.

v4.ReadBackWindowBegin

Starts tracking a remote window; e.g. a window on the remote desktop. This function is similar to
v3.ReadBackWindowBegin() but it provides a way to include auxiliary windows along with the primary window.
Auxilary windows are top level window that will be included with the readback image if they overlap the primary
window.

The API requires some time to begin tracking a remote window. v3.ReadBackWindow() will return the error code
VDP_SCREEN_CAPTURE_ERROR_READBACK_WINDOW_NOT_READY until it is ready to return images.

The callback VDPScreenCapture_Sink.v3.0nReadBackWindowReady() will be called when the APl is ready to return
images.

The callback VDPScreenCapture_Sink.v3.0nReadBackWindowDestroyed() will be called if the remote window is
destroyed while being tracked.

The callback VDPScreenCapture_Sink.v3.0nReadBackWindowRemoteError() will be called if there is an error when
setting up the tracking.

When finished, you must release the resources used to track the remote window by calling
v3.ReadBackWindowEnd().

If there are multiple calls to v3/v4.ReadBackWindowBegin() to track the same window, each will return a different
ReadBackWindow handle. Each handle will have to released by calling v3.ReadBackWindowEnd(). But the first call
defines the parameters and the subsequent calls must provide the same parameters, including the list of auxiliary
windows.

This function is a member of VDPScreenCapture_Interface.

Method Signature
VDPScreenCapture_Error (*v4.ReadBackWindowBegin)(VDPScreenCapture_Contextld contextld, VDPScreenCapture_HWND hWnd, uint32
processld, VDPScreenCapture_ HWND* hWndAux, uint32* processldAux, int32 auxWindowCount, uint32 flags,
VDPScreenCapture_ReadBackWindowHandle* phReadBackWindow);

Parameters

Parameter Description

contextld The ID returned from VDPScreenCapture.v1.Init().

hwnd The Windows HWND of the remote window to track.

processld The Windows process ID associated with the HWND. An error will be

returned if the HWND does not belong to this process.

Parameter Description

An array of Windows HWNDs to include with the readback image. These
hWndAux images will only be included with the readback image if they overlap the
primary window.

An array of process IDs associated with the corresponding hWndAux. An
processldAux error will be returned if the HWND does not belong to the corresponding
process.

The count of auxiliary windows in the hWndAux array and process IDs in the
auxWindowCount processldAux array. hWndAux and processldAux may be NULL if
auxWindowCount is 0.

Options to apply to the read back. See

fl
ags VDP_SCREEN_CAPTURE_READBACK_BEGIN_* flags for more information.

Returns a handle to be used with v3.ReadBackWindow() and
phReadBackWindow v3.ReadBackWindowEnd(). This handle is also passed to the
ReadBackWindow callbacks.

Return Values

Value Description

The tracking of the remote window is being initialized by asking the
VDP_SCREEN_CAPTURE_ERROR_SUCCESS Horizon Agent to track the window. One of the sink functions will be
called to notify you if setting up the tracking was successful or not.

contextld is invalid, hWnd is O, processld is 0,
VDP_SCREEN_CAPTURE_ERROR_INVALID_PARAMETER hWndAux/auxWindowCount is NULL (and auxWindowCount > 0), or
phReadBackWindow is NULL.

The ReadBackWindow interface requires the Blast protocol.

VDP_SCREEN_CAPTURE_ERROR_UNSUPPORTED_PROTOCOL) R e
- - - - - Attempts to use the interface with other protocols will fail.

The version of the Horizon Agent running on the remote desktop

VDP_SCREEN_CAPTURE_ERROR_UNSUPPORTED_AGENT
- - - - - does not support the ReadbackWindow interface.

One of the options in the flags parameter is not supported or

VDP_SCREEN_CAPTURE_ERROR_UNSUPPORTED_OPTION . .
- - - - - auxiliary windows are not supported.

VDP_SCREEN_CAPTURE_ERROR_HOST_ERROR There was an error in setting up the tracking of the remote window.

v4.GetReadBackWindowlnfo

Retrieves information about the given readback window including state, location, etc.
This function is a member of VDPScreenCapture_Interface.

Method Signature

VDPScreenCapture_Error (*v4.GetReadBackWindowInfo)(VDPScreenCapture_Contextld contextld,
VDPScreenCapture_ReadBackWindowHandle hReadBackWindow, VDPScreenCapture_ReadBackWindowInfo* pReadbackWindowInfo);

Parameters
Parameter Description
contextld The ID returned from VDPScreenCapture.vi.Init().

hReadBackWindow The handle returned from v3/v4.ReadBackWindowBegin().

Parameter Description

pReadbackWindowlInfo Returns the information about the readback window.

Return Values

Value Description

The information about the readback

VDP_SCREEN_CAPTURE_ERROR_SUCCESS) .
- - - - window is returned.

contextld is invalid, hReadBackWindow is

VDP_SCREEN_CAPTURE_ERROR_INVALID_PARAMETER
- - - - - invalid or pReadbackWindowInfo is NULL.

There was an error in getting the

VDP_SCREEN_CAPTURE_ERROR_HOST_ERROR X . X
- - - - - information on the readback window.

v4.RegisterForReadBackRequests

Registers for screen and window read back requests. When v2.ReadBackScreen() or v3.ReadBackWindow() is called
the Screen Capture APl will issue a callback where an image can be provided so that it is included in the read back
image.

VDPScreenCapture_Sink.v4.0nReadBackRequest() will be invoked when a read back of a screen or window is being
done. The callback can then provide an image to be included in the read back image returned by calling
v4.ReadBackRequestUpdate().

Each registration can provide an image for a single area of the screen. If you have multiple areas of the screen that
need to be updated then you will need to register for multiple callbacks. This applies even if there are multiple
areas associated with the same window; in this case that window would have to be registered multiple times.

This function is a member of VDPScreenCapture_Interface.

Method Signature

VDPScreenCapture_Error (*v4.RegisterForReadBackRequests)(VDPScreenCapture_Contextld contextld, VDPScreenCapture_ HWND hWnd,
VDPScreenCapture_ReadBackRequestld* pReadBackRequestld);

Parameters
Parameter Description
contextld The ID returned from VDPScreenCapture.v1.Init().
The Windows HWND of a window on the remote desktop. If set to NULL
hwnd then you will only receive callbacks when v2.ReadBackScreen() is called. If

set to non-NULL you will receive callbacks for v2.ReadBackScreen() as well as
calls to v3.ReadBackWindow() with a matching window handle.

Returns an ID to be used with v4.CaptureRequestUpdate() and
pReadBackRequestld v4.UnregisterForReadBackRequests(). This ID is also passed to the
VDPScreenCapture_Sink.v4.0nReadBackRequest() callback.

Return Values

Value Description

VDP_SCREEN_CAPTURE_ERROR_SUCCESS The window is registered for callbacks.

contextld is invalid or

VDP_SCREEN_CAPTURE_ERROR_INVALID_PARAMETER .
- - - - - pReadBackRequestld is NULL.

There was an error registering the

VDP_SCREEN_CAPTURE_ERROR_HOST_ERROR .
- - - - - window.

v4.UnregisterForReadBackRequests

Unregisters a read back request and releases its resources.
This function is a member of VDPScreenCapture_Interface.

Method Signature

VDPScreenCapture_Error (*v4.UnregisterForReadBackRequests)(VDPScreenCapture_Contextld contextld,
VDPScreenCapture_ReadBackRequestld readBackRequestld);

Parameters

Parameter Description

contextld The ID returned from VDPScreenCapture.vi.Init().

readBackRequestld The ID returned from VDPScreenCapture.v4.RegisterForReadBackRequests().

Return Values

Value Description

VDP_SCREEN_CAPTURE_ERROR_SUCCESS The window is unregistered for callbacks.

contextld is invalid or readBackRequestld

VDP_SCREEN_CAPTURE_ERROR_INVALID_PARAMETER . .
- - - - - is invalid.

There was an error unregistering the

VDP_SCREEN_CAPTURE_ERROR_HOST_ERROR)
window.

v4.ReadBackRequestUpdate

Provides an image to include in a read back image. While this function can be called at any time, it is normally
called during the v4.0nReadBackRequest() callback to provide an image. A copy of the image is made and is used
in all further read back requests until the image is either replaced or removed by the next call to
v4.ReadBackRequestUpdate().

This function is a member of VDPScreenCapture_Interface.

Method Signature

VDPScreenCapture_Error (*v4.ReadBackRequestUpdate)(VDPScreenCapture_Contextld contextld, VDPScreenCapture_ReadBackRequestld
readBackRequestld, VDPScreenCapture_ReadBackRequestParams* pRequestParams);

Parameters

Parameter Description
contextld The ID returned from VDPScreenCapture.vi.Init().
readBackRequestld The ID returned from VDPScreenCapture.v4.RegisterForReadBackRequests().

A structure that contains the image to be included in a read back screen or

pRequestParams

Return Values

window capture image. Pass NULL to remove any previously set image.

Value

VDP_SCREEN_CAPTURE_ERROR_SUCCESS

VDP_SCREEN_CAPTURE_ERROR_INVALID_PARAMETER

VDP_SCREEN_CAPTURE_ERROR_HOST_ERROR

Description

The window is unregistered for callbacks.

contextld is invalid, readBackRequestld is
invalid or one of the values in
pRequestParams is invalid.

There was an error applying the image to
the read back image.

Channel Sinks

To interact with and receive notifications of changes, you must register sinks with the Horizon Session
Enhancement APIs. Channel sinks are common sinks.

These functions are members of VDPService_ChannelNotifySink.

v1.0nChannelStateChanged

This method is invoked when there is a change in the channel connection that this plug-in instance uses.

This function is a member of VDPService_ChannelNotifySink.

Method Signature

void (*v1.0nChannelStateChanged)(void *userData, VDPService_ChannelState currentState, VDPService_ChannelState transientState, void

*reserved);
Parameters
Parameter Description
userData Parameter passed in to the v1.RegisterChannelNotifySink method. May be NULL.
currentState The current state of the connection.
transientState The state change that caused the callback. This can be different from currentState if other state changes have already
taken place and are waiting to be processed.
reserved Unused parameter.

Return Values

None

v1.0nConnectionStateChanged
This method is invoked when the connection in the underlying user session has changed its state.

This function is a member of VDPService_ChannelNotifySink.

Method Signature

void (*v1.0nConnectionStateChanged)(void *userData, VDPService_ConnectionState currentState, VDPService_ConnectionState

transientState, void *reserved);

Parameters

Parameter Description

userData Parameter passed in to the v1.RegisterChannelNotifySink method. May be NULL.

currentState The current state of the connection.

transientState The state change that caused the callback. This can be different from currentState if other state changes have already

taken place and are waiting to be processed.

reserved Unused parameter.

Return Values

None

v1.0nPeerObjectCreated

This method is invoked when an object was created on the other side of the channel connection, and no object
with the same name exists locally

This function is a member of VDPService_ChannelNotifySink.

Method Signature

void (*v1.0nPeerObjectCreated)(void *userData, const char *objName, void *reserved);

Parameters

Parameter Description

userData Parameter passed in to the v1.RegisterChannelNotifySink method. May be NULL.
objName The name of the object created by the peer.
reserved Unused parameter.

Return Values

None

RPC Sinks

You must register RPC sinks to interact with and receive notifications of changes to RPC-specific Horizon Session

Enhancement APls.

v1.0nAbort

This method is called when the Invoke call that this sink is registered with fails due to a Horizon Session
Enhancement error.

This function is a member of VDPRPC_RequestCallback.

Method Signature

void (*v1.0nAbort)(void *userData, uint32 contextld, Bool userCancelled, uint32 reason);

Parameters

Parameter Description

userData The userData parameter passed to the Invoke method.
contextld ID of the context that was passed to the Invoke method.
userCancelled FALSE.

reason A VDP_RPC_E_* error code.

Return Values

None

v1.0nDone

This method is called when the Invoke method that this sink is registered with returns from the peer. The contextld
parameter maps to the ID of the context that is passed to the Invoke call. This ID does not match the ID of the
context that contextHandle points to. The contextHandle parameter holds all of the return codes and values given
by the peer.

This function is a member of VDPRPC_RequestCallback.

Method Signature

void (*v1.0nDone)(void *userData, uint32 contextld, void *contextHandle);

Parameters

Parameter Description

userData The userData parameter passed to the Invoke method.

contextld ID of the context that was passed to the Invoke method.
contextHandle Handle for the context that holds all of the return data from the peer.

Return Values

None

v1.0Onlnvoke

This method is invoked when the peer on the other end of the channel calls Invoke. The contextHandle parameter is
used to retrieve the data given by the peer, using

VDPService_ChannelContextinterface. This same context should be altered to hold the return values, and the context
will be returned to the caller when this method returns.

This function is a member of VDPRPC_ObjectNotifySink.

Method Signature

void (*v1.0nlInvoke)(void *userData, void *contextHandle, void *reserved);

Parameters

Parameter Description

userData The userData parameter passed into the CreateChannelObject method. May be NULL.
contextHandle Handle for the context that will contain the data for the call, and to hold the return values.
reserved Unused parameter.

Return Values

None

v1.0nObjectStateChanged

Called when the state of the object this sink was registered with has changed.

This function is a member of VDPRPC_ObjectNotifySink.

Method Signature

void (*v1.0nObjectStateChanged)(void *userData, void *reserved);

Parameters

Parameter Description
userData The userData parameter passed in to the CreateChannelObject method. May be NULL.

reserved Unused parameter.

Return Values

None

Overlay Sinks

You must register overlay sinks to interact with and receive notifications of changes to overlay specific Horizon
Session Enhancement APls.

VDPOverlayGuest_Sink Functions

The following sections describe the VDPOverlayGuest_Sink functions.

v1.0nOverlayCreateError

This event handler is called when the client-side overlay is not created due to an error. Note that the window that is
associated with the overlay is automatically unregistered.

This function is a member of VDPOverlayGuest_Sink.

Method Signature

void (*v1.0nOverlayCreateError)(void *userData, VDPOverlay_Windowld windowld, VDPOverlay_Error error);

Parameters

Parameter Description

userData The userData parameter passed in to the Init call.
windowld The window ID that this callback corresponds to.
error The error that was encountered.

Return Values
None
v1.0nOverlayReady

This event handler is called when the client-side overlay is ready to be displayed. It does not mean that the overlay
is enabled or even that the client-side has loaded an image into the overlay. It means only that the overlay was
properly created and is ready to display an image.

This function is a member of VDPOverlayGuest_Sink.

Method Signature
void (*v1.0nOverlayReady)(void *userData, VDPOverlay_Windowld windowld, uint32 response);

Parameters

Parameter Description

userData The userData parameter that was passed to the Init call.
windowld The window ID that this callback corresponds to.
response Client-side plug-in response.

Return Values
None

v1.0nOverlayRejected

This event handler is called when the client-side overlay is not created because the client-side plug-in rejected it.
Note that the window that is associated with the overlay is automatically unregistered.

This function is a member of VDPOverlayGuest_Sink.

Method Signature

void (*v1.0nOverlayRejected)(void *userData, VDPOverlay_Windowld windowld, uint32 reason);

Parameters

Parameter Description

userData The userData parameter passed in to the Init call.
windowld The window ID that this callback corresponds to.
reason The client-side plug-in reason given for rejecting the overlay.

Return Values
None

v1.0nUserMsg (Guest Sink)

This event handler is called in response to a call to v1.SendMsg from the client.

This function is a member of VDPOverlayGuest_Sink.

Method Signature

void (*v1.0nUserMsg)(void *userData, VDPOverlay_Windowld windowld, void *msg, uint32 msgLen);

Parameters

Parameter Description

userData The userData parameter passed in to the Init call.

Parameter Description

windowld The window ID that this message is sent to, or VDP_OVERLAY_WINDOW_ID_NONE if the message was not sent to a particular

window.
msg The message data. Not valid after the call returns.
msglen Length of msg, in bytes.

Return Values
None

VDPOverlayClient_Sink Functions

The following sections describe the VDPOverlayClient_Sink functions.

v1.0nLayoutModeChanged

This event handler is called when the layout mode for the overlay is changed. This event handler is for information
only. No action is required by the plug-in.

This function is a member of VDPOverlayClient_Sink.
Method Signature

void (*v1.0nLayoutModeChanged)(void *userData, VDPOverlayClient_Contextld contextld, VDPOverlay_Windowld windowld,
VDPOverlay_LayoutMode layoutMode);

Parameters

Parameter Description

userData The userData parameter passed to the Init method.
contextld The context ID returned from the Init call.

windowld Window ID that corresponds to the referenced overlay.

layoutMode The new layout mode.

Return Values
None

v1.0nOverlayDisabled

This event handler is called when the guest side deactivates the overlay using the DisableOverlay method, causing
the current image in the overlay to be hidden. The overlay image data is maintained and will be re-displayed when
the overlay is re-activated.

This function is a member of VDPOverlayClient_Sink.

Method Signature
void (*v1.0nOverlayDisabled)(void *userData, VDPOverlayClient_Contextld contextld, VDPOverlay_Windowld windowld,
VDPOverlay_UserArgs userArgs);

Parameters

Parameter Description

userData The userData parameter passed to the Init method.
contextld The context ID returned from the Init call.

windowld Window ID that corresponds to the deactivated overlay.
userArgs Value passed by the guest side to the DisableOverlay call.

Return Values
None

v1.0nOverlayEnabled

This event handler is called when the guest side activates the overlay using the EnableOverlay method. This event
handler causes the current image in the overlay to be displayed.

This function is a member of VDPOverlayClient_Sink.

Method Signature
void (*v1.0nOverlayEnabled)(void *userData, VDPOverlayClient_Contextld contextld, VDPOverlay_Windowld windowld,
VDPOverlay_UserArgs userArgs);

Parameters

Parameter Description

userData The userData parameter passed to the Init method.
contextld The context ID returned from the Init call.

windowld Window ID that corresponds to the activated overlay.
userArgs Value passed by the guest side to the EnableOverlay call.

Return Values
None

v1.0nUserMsg (Client Sink)
This event handler is used when the guest-side application has called the SendMsg method.

This function is a member of VDPOverlayClient_Sink.

Method Signature
void (*v1.0nUserMsg)(void *userData, VDPOverlayClient_Contextld contextld, VDPOverlay_Windowld windowld, void *msg, uint32
msgLen);

Parameters

Parameter Description

userData The userData parameter passed in to the Init call.

contextld The context ID returned from the Init call.

windowld The window ID that this message is sent to, or VDP_OVERLAY_WINDOW_ID_NONE if the message was not sent to a particular

window.
msg The message data. Not valid after the call returns.
msglLen Length of msg, in bytes.

Return Values
None

v1.0nWindowObscured

This event handler is called when the guest-side window that the overlay is tracking is completely obscured. The
client-side can use this event as a hint to scale back drawing to the overlay.

This function is a member of VDPOverlayClient_Sink.

Method Signature
void (*v1OnWindowObscured)(void *userData, VDPOverlayClient_Contextld contextld, VDPOverlay_Windowld windowld);

Parameters

Parameter Description

userData The userData parameter passed to the Init method.
contextld The context ID returned from the Init call.
windowld Window ID that corresponds to the obscured overlay.

Return Values
None

v1.0nWindowPositionChanged

This event handler is called when the guest-side window that the overlay is tracking changes position. The overlay
is drawn at the new location. This event handler is for information only. No action is required by the plug-in.

This function is a member of VDPOverlayClient_Sink.

Method Signature
void (*v1.0nWindowPositionChanged)(void *userData, VDPOverlayClient_Contextld contextld, VDPOverlay_Windowld int32 x, int32 y);

Parameters

Parameter Description

userData The userData parameter passed to the Init method.
contextld The context ID returned from the Init call.

windowld Window ID that corresponds to the repositioned overlay.
X New X position with the display.

y New Y position with the display.

Return Values
None

v1.0nWindowRegistered

This event handler is called when the guest-side application registers a window using the RegisterWindow method.
You can reject the request by setting reject to TRUE. Use the response parameter to return a reason to the guest.
You can also use response to send a message to the guest in the non-rejected case.

Note Cache the windowld parameter because it is required to identify the overlay to the Overlay API.

This function is a member of VDPOverlayClient_Sink.

Method Signature
void (*v1.0nWindowRegistered)(void *userData, VDPOverlayClient_Contextld contextld, VDPOverlay_Windowld windowld,
VDPOverlay_UserArgs userArgs, Bool *reject, uint32 *response);

Parameters

Parameter Description

userData The userData parameter passed in to the Init call.
contextld The context ID returned from the Init call.

windowld The window ID representing the new overlay.
userArgs Value sent by the guest-side in the Registerwindow call.
reject Set to TRUE to deny the request to create an overlay.
response Response sent back to the guest.

Return Values
None

v1.0nWindowSizeChanged

This event handler is called when the guest-side window that the overlay is tracking changes size. The old overlay
image is redrawn according to the layout mode of the overlay. This event handler is for information only. No action
is required by the plug-in.

This function is a member of VDPOverlayClient_Sink.

Method Signature
void (*v1.0nWindowsSizeChanged)(void *userData, VDPOverlayClient_Contextld contextld, VDPOverlay_Windowld windowld, int32 width,
int32 height);

Parameters

Parameter Description

userData The userData parameter passed to the Init method.
contextld The context ID returned from the Init call.
windowld Window ID that corresponds to the resized overlay.
width New width of the window.

height New height of the window.

Return Values
None

v1.0nWindowUnregistered

This event handler is called when the guest-side unregisters a window using the UnregisterWindow method. The
window ID is no longer valid, and the overlay associated with the window ID is destroyed.

This function is a member of VDPOverlayClient_Sink.

Method Signature

void (*v1.0nWindowUnregistered)(void *userData, VDPOverlayClient_Contextld contextld, VDPOverlay_Windowld windowld,
VDPOverlay_UserArgs userArgs);

Parameters

Parameter Description

userData The userData parameter passed to the Init method.

contextld The context ID returned from the Init call.

windowld Window ID for the window that was unregistered.

userArgs Value sent by the guest-side application in the UnregisterWindow call.

Return Values
None

v1.0nWindowVisible

This event handler is called when the guest-side window that the overlay is tracking was obscured but now is at
least partially visible.

This function is a member of VDPOverlayClient_Sink.

Method Signature
void (*v1.0nWindowVisible)(void *userData, VDPOverlayClient_Contextld contextld, VDPOverlay_Windowld windowld);

Parameters

Parameter Description

userData The userData parameter passed to the Init method.
contextld The context ID returned from the Init call.
windowld Window ID that corresponds to the overlay that is now partially visible.

Return Values
None

v3.0nlayerChanged

This event handler is called when the layer for the overlay is changed. This event handler is for information only. No
action is required by the plugin.

This function is a member of VDPOverlayClient_Sink.

Method Signature
void (*v3.0nLayerChanged)(void* userData, VDPOverlayClient_Contextld contextld, VDPOverlay_Windowld windowld, uint32 layer);

Parameters

Parameter Description

userData The userData parameter passed to the Init method.
contextld The context ID returned from the Init call.
windowld The window ID.

layer The new layer.

Return Values
None

v3.0nTopologyChanged

This event handler is called when the desktop topology of the Horizon client has changed. The desktopTopology
array is only valid during the callback. This event handler is for information only.

No action is required by the plugin.
This function is a member of VDPOverlayClient_Sink.
Method Signature

void (*v3.0nTopologyChanged)(void* userData, VDPOverlayClient_Contextld contextld, const VDPOverlay_Rect* desktopBounds, int32
szDesktopTopology, const VDPOverlay_Rect* desktopTopology);

Parameters

Parameter Description

userData The userData parameter passed to the Init method.
contextld The context ID returned from the Init call.
desktopBounds The desktop bounding box.

szDesktopTopology The size of the desktopTopology array.

desktopTopology The desktop topology.

Return Values
None

Screen Capture Sinks

You must register screen capture sinks to interact with and receive notifications of changes to screen capture
specific Horizon Session Enhancement APls. This chapter describes the VDPScreenCapture_Sink functions.

v1.0nTopologyChanged

This event handler is called when the topology of the Horizon client has changed. This is for information only, no
action is required by the plugin.

This function is a member of VDPScreenCapture_Sink.

Method Signature

void (*v1.0nTopologyChanged)(void* userData, VDPScreenCapture_Contextld contextld, uint32 flags);

Parameters

Parameter Description
userData The userData parameter passed in to v1.Init().

contextld The context ID returned from v1.Init().

Bit values that tell you what has changed. See the
flags VDP_SCREEN_CAPTURE_TOPOLOGY_CHANGED flags for
more information.

Return Values
None

v3.0nReadBackWindowReady

This event handler is called after v3/v4.ReadBackWindowBegin() is called to inform the application that the image
for the window is now ready to be captured.

This function is a member of VDPScreenCapture_Sink.

Method Signature

void (*v3.0nReadBackWindowReady)(void* userData, VDPScreenCapture_Contextld contextld,
VDPScreenCapture_ReadBackWindowHandle hReadBackWindow);

Parameters

Parameter Description

userData The userData parameter passed in to v1.Init().

Parameter Description
contextld The context ID returned from v1.Init().

hReadBackWindow The handle returned from v3/v4.ReadBackWindowBegin().

Return Values
None

v3.0nReadBackWindowDestroyed

This event handler is called if the remote desktop window being tracked is destroyed. It is not called when
v3.ReadBackWindowEnd() is called.

This function is a member of VDPScreenCapture_Sink.

Method Signature

void (*v3.0nReadBackWindowDestroyed)(void* userData, VDPScreenCapture_Contextld contextld,
VDPScreenCapture_ReadBackWindowHandle hReadBackWindow);

Parameters

Parameter Description

userData The userData parameter passed in to v1.Init().
contextld The context ID returned from v1.Init().

hReadBackWindow The handle returned from v3/v4.ReadBackWindowBegin().

Return Values
None

v3.0nReadBackWindowRemoteError

This event handler is called if there is an error when setting up the window tracking usually due to an error
returned by the Horizon Agent on the remote desktop. When this event handler is called,
v3.0nReadBackWindowReady() will not be called. v3.ReadBackWindowEnd() must still be called to free up
resources.

This function is a member of VDPScreenCapture_Sink.

Method Signature

void (*v3.0nReadBackWindowRemoteError)(void* userData, VDPScreenCapture_Contextld contextld,
VDPScreenCapture_ReadBackWindowHandle hReadBackWindow, VDPScreenCapture_RemoteError remoteError);

Parameters

Parameter Description
userData The userData parameter passed in to v1.Init().
contextld The context ID returned from v1.Init().

hReadBackWindow The handle returned from v3/v4.ReadBackWindowBegin().

The reason the tracking failed. See the

remoteError X X
VDPScreenCapture_RemoteError values for more information.

Return Values
None

v4.0nReadBackWindowLocationChanged

This event handler is called if the remote desktop window being tracked is resized or moved. You must set the flag
VDP_SCREEN_CAPTURE_READBACK_BEGIN_LOCATION_CHANGED/_EX in the call to
v3/v4.ReadBackWindowBegin() to receive this event.

This function is a member of VDPScreenCapture_Sink.

Method Signature

void (*v4.0nReadBackWindowLocationChanged)(void* userData, VDPScreenCapture_Contextld contextld,
VDPScreenCapture_ReadBackWindowHandle hReadBackWindow, const VMRect* pLocation);

Parameters

Parameter Description

userData The userData parameter passed in to v1.Init().
contextld The context ID returned from v1.Init().

hReadBackWindow The handle returned from v3/v4.ReadBackWindowBegin().

pLocation The new location of the window.

Return Values
None
v4.0nReadBackWindowlmageChanged

This event handler is called if the contents of the remote desktop window being tracked changes; i.e. the pixels in
the window have changed. You must set the flag VDP_SCREEN_CAPTURE_READBACK_BEGIN_IMAGE_CHANGED in
the call to v3.ReadBackWindowBegin()to receive this event.

This function is a member of VDPScreenCapture_Sink.

Method Signature

void (*v4.0nReadBackWindowlmageChanged)(void* userData, VDPScreenCapture_Contextld contextld,
VDPScreenCapture_ReadBackWindowHandle hReadBackWindow);

Parameters

Parameter Description

userData The userData parameter passed in to v1.Init().
contextld The context ID returned from v1.Init().

hReadBackWindow The handle returned from v3/v4.ReadBackWindowBegin().

Return Values
None

v4.0nReadBackRequest

This event handler is called when the Screen Capture APl is requesting content to be included in a read back image.
This function is a member of VDPScreenCapture_Sink.

Method Signature

void (*v4.0nReadBackRequest)(void* userData, VDPScreenCapture_Contextld contextld, VDPScreenCapture_ReadBackRequestld
readBackRequestld, VDPScreenCapture_ HWND hWnd);

Parameters

Parameter Description

userData The userData parameter passed in to v1.Init().
contextld The context ID returned from v1.Init().

readBackRequestld The handle returned from v4.RegisterForReadBackRequests().

The VDPScreenCapture_ HWND passed to

hWnd
n v4.RegisterForReadBackRequests().

Return Values
None

	Preface
	Intended Audience

	Overview of the Omnissa Horizon Session Enhancement SDK
	Introduction to the API
	OpenSSL Issue
	Supported Versions of Horizon Software
	Supported Client Operating Systems

	What's New in Omnissa Horizon Session Enhancement SDK 4.0
	Key Concepts of Omnissa Horizon Session Enhancement
	Connection
	Channel
	Side Channel
	Channel Context
	Overlay
	Remote Procedure Call
	Sink
	Variant

	Omnissa Horizon Session Enhancement Program Flow
	Application Initialization
	Plug-In Initialization
	Sink Registration
	Thread Initialization
	Channel
	Query Interface
	Table 1-1. Horizon Session Enhancement GUIDs – Only showing the latest GUID for each interface

	Application
	Table 1-2. Horizon Session Enhancement Server Functions

	Plug-in
	Table 1-3. Horizon Session Enhancement Exported Plug-In Functions

	RPC API
	Channel Object
	Invoke
	Variant
	OnInvoke
	Application Shutdown
	Plug-In Shutdown

	Overlay API
	Guest Setup
	Client Setup

	Screen Capture API
	Screen Capture
	Read Back Window

	Virtual Channel and Side Channel Security
	Virtual Channel Security
	Side Channel Security

	Installation
	Remote Desktop
	Client
	Windows Client
	Linux Client
	Mac Client

	Sample Code

	Data Types and Error Codes
	Data Types
	VDP Service Data Types
	Table 2-1. VDPService Data Types

	VDP RPC Data Types
	Table 2-2. VDP RPC Data Types

	VDPOverlay Data Types
	Table 2-3. VDPOverlayGuest Data Types
	Table 2-4. VDPOverlayClient Data Types

	VDPScreenCapture Data Types
	Table 2-5. VDPScreenCapture Data Types
	VDP_SCREEN_CAPTURE_TOPOLOGY_CHANGED flags
	VDP_SCREEN_CAPTURE_READBACK_CAPS flags
	VDP_SCREEN_CAPTURE_READBACK_BEGIN flags
	VDP_SCREEN_CAPTURE_READBACK flags
	VDPScreenCapture_ReadBackParameters
	VDPScreenCapture_ImageInfo
	VDPScreenCapture_ReadBackWindowInfo
	VDPScreenCapture_ReadBackRequestParams

	Error Codes
	RPC OnAbort Reason Error Codes
	VDPOverlay_Error Codes
	VDPScreenCapture_Error Codes
	VDPScreenCapture_RemoteError Codes

	Channel Interaction Functions
	v1.Broadcast
	Method Signature
	Parameters
	Return Values

	v1.Connect
	Method Signature
	Parameters
	Return Values

	v1.Disconnect
	Method Signature
	Parameters
	Return Values

	v1.GetChannelState
	Method Signature
	Parameters
	Return Values

	v1.GetConnectionState
	Method Signature
	Parameters
	Return Values

	v1.Poll
	Parameters
	Return Values

	v1.RegisterChannelNotifySink
	Method Signature
	Parameters
	Return Values

	v1.RegisterObserver
	Method Signature
	Parameters
	Return Values

	v1.ThreadInitialize
	Method Signature
	Parameters
	Return Values

	v1.ThreadUninitialize
	Method Signature
	Parameters
	Return Values

	v1.UnregisterChannelNotifySink
	Method Signature
	Parameters
	Return Values

	v1.UnregisterObserver
	Method Signature
	Parameters
	Return Values

	v2.GetSessionType
	Method Signature
	Parameters
	Return Values

	v2.SwitchToStreamDataMode
	Method Signature
	Parameters
	Return Values

	v3.Poll
	Method Signature
	Parameters
	Return Values

	RPC Functions
	v1.AppendNamedParam
	Method Signature
	Parameters
	Return Values

	v1.AppendNamedReturnVal
	Method Signature
	Parameters
	Return Values

	v1.AppendParam
	Method Signature
	Parameters
	Return Values

	v1.AppendReturnVal
	Method Signature
	Parameters
	Return Values

	v1.CreateChannelObject
	Method Signature
	Parameters
	Return Values

	v1.CreateContext
	Method Signature
	Parameters
	Return Values

	v1.DestroyChannelObject
	Method Signature
	Parameters
	Return Values

	v1.DestroyContext
	Method Signature
	Parameters
	Return Values

	v1.GetCommand
	Method Signature
	Parameters
	Return Values

	v1.GetId
	Method Signature
	Parameters
	Return Values

	v1.GetMinimalStreamDataSize
	Method Signature
	Parameters
	Return Values

	v1.GetNamedCommand
	Method Signature
	Parameters
	Return Values

	v1.GetNamedParam
	Method Signature
	Parameters
	Return Values

	v1.GetNamedReturnVal
	Method Signature
	Parameters
	Return Values

	v1.GetObjectName
	Method Signature
	Parameters
	Return Values

	v1.GetObjectState
	Method Signature
	Parameters
	Return Values

	v1.GetParam
	Method Signature
	Parameters
	Return Values

	v1.GetParamCount
	Method Signature
	Parameters
	Return Values

	v1.GetReturnCode
	Method Signature
	Parameters
	Return Values

	v1.GetReturnVal
	Method Signature
	Parameters
	Return Values

	v1.GetReturnValCount
	Method Signature
	Parameters
	Return Values

	v1.GetStreamDataHeaderTail
	Method Signature
	Parameters
	Return Values

	v1.GetStreamDataHeaderTailSize
	Method Signature
	Parameters
	Return Values

	v1.GetStreamDataInfo
	Method Signature
	Parameters
	Return Values

	v1.GetStreamDataSize
	Method Signature
	Parameters
	Return Values

	v1.Invoke
	Method Signature
	Parameters
	Return Values

	v1.SetCommand
	Method Signature
	Parameters
	Return Values

	v1.SetNamedCommand
	Method Signature
	Parameters
	Return Values

	v1.SetReturnCode
	Method Signature
	Parameters
	Return Values

	v1.VariantClear
	Method Signature
	Parameters
	Return Values

	v1.VariantCopy
	Method Signature
	Parameters
	Return Values

	v1.VariantFromBlob
	Method Signature
	Parameters
	Return Values

	v1.VariantFromChar
	Method Signature
	Parameters
	Return Values

	v1.VariantFromDouble
	Method Signature
	Parameters
	Return Values

	v1.VariantFromFloat
	Method Signature
	Parameters
	Return Values

	v1.VariantFromInt32
	Method Signature
	Parameters
	Return Values

	v1.VariantFromInt64
	Method Signature
	Parameters

	Return Values

	v1.VariantFromShort
	Method Signature
	Parameters
	Return Values

	v1.VariantFromStr
	Method Signature
	Parameters
	Return Values

	v1.VariantFromUInt32
	Method Signature
	Parameters
	Return Values

	v1.VariantFromUInt64
	Method Signature
	Parameters
	Return Values

	v1.VariantFromUShort
	Method Signature
	Parameters
	Return Values

	v1.VariantInit
	Method Signature
	Parameters
	Return Values

	v2.FreeStreamDataPayload
	Method Signature
	Parameters
	Return Values

	v2.GetStreamData
	Method Signature
	Parameters
	Return Values

	v2.GetStreamDataInfo
	Method Signature
	Parameters
	Return Values

	v2.IsSideChannelAvailable
	Method Signature
	Parameters
	Return Values

	v2.RequestSideChannel
	Method Signature
	Parameters
	Return Values

	v2.SetOps
	Method Signature
	Parameters
	Return Values

	v3.CreateContext
	Method Signature
	Parameters
	Return Values

	v3.GetObjectOptions
	Method Signature
	Parameters
	Return Values

	v4.GetObjectStateByName
	Method Signature
	Parameters
	Return Values

	VDPOverlay Functions
	VDPOverlayGuest_Interface Functions
	v1.DisableOverlay
	Method Signature
	Parameters
	Return Values

	v1.EnableOverlay
	Method Signature
	Parameters
	Return Values

	v1.Exit for the Guest-Side Library
	Method Signature
	Parameters
	Return Values

	v1.GetLayoutMode
	Method Signature
	Parameters

	v1.Init for the Guest-Side Library
	Method Signature
	Parameters
	Return Values

	v1.IsOverlayEnabled
	Method Signature
	Parameters
	Return Values

	v1.IsWindowRegistered
	Method Signature
	Parameters
	Return Values

	v1.RegisterWindow
	Method Signature
	Parameters
	Return Values

	v1.SendMsg for the Guest-Side Library
	Method Signature
	Parameters
	Return Values

	v1.SetLayoutMode
	Method Signature
	Parameters
	Return Values

	v1.UnregisterWindow
	Method Signature
	Parameters
	Return Values

	v2.GetColorkey
	Method Signature
	Parameters
	Return Values

	v3.GetAreaRect
	Method Signature
	Parameters
	Return Values

	v3.GetLayer
	Method Signature
	Parameters
	Return Values

	v3.RegisterWindow
	Method Signature
	Parameters
	Return Values

	v3.SetAreaRect
	Method Signature
	Parameters
	Return Values

	v3.SetLayer
	Method Signature
	Parameters
	Return Values

	v4.GetAreaRect
	Method Signature
	Parameters
	Return Values

	v4.GetBackgroundColor
	Method Signature
	Parameters
	Return Values

	v4.GetHWnd
	Method Signature
	Parameters
	Return Values

	v4.GetInfoString
	Method Signature
	Parameters
	Return Values

	v4.SetAreaRect
	Method Signature
	Parameters

	v4.SetBackgroundColor
	Method Signature
	Parameters
	Return Values

	v4.SetInfoString
	Method Signature
	Parameters
	Return Values

	VDPOverlayClient_Interface Functions
	v1.Exit
	Method Signature
	Parameters
	Return Values

	v1.GetInfo
	Method Signature
	Parameters
	Return Values

	v1.Init for the Client-Side Library
	Method Signature
	Parameters
	Return Values

	v1.SendMsg
	Method Signature
	Parameters
	Return Values

	v1.Update
	Method Signature
	Parameters
	Return Values

	v2.CreateOverlay
	Method Signature
	Parameters
	Return Values

	v2.DestroyOverlay
	Method Signature
	Parameters
	Return Values

	v2.DisableOverlay
	Method Signature
	Parameters
	Return Values

	v2.EnableOverlay
	Method Signature
	Parameters
	Return Values

	v2.GetInfo
	Method Signature
	Parameters
	Return Values

	v2.InitLocal
	Method Signature
	Parameters
	Return Values

	v2.SetClipRegion
	Method Signature
	Parameters

	v2.SetColorkey
	Method Signature
	Parameters

	v2.SetLayer
	Method Signature
	Parameters
	Return Values

	v2.SetLayoutMode
	Method Signature
	Parameters
	Return Values

	v2.SetPosition
	Method Signature
	Parameters
	Return Values

	v2.SetSize
	Method Signature
	Parameters
	Return Values

	v2.Update
	Method Signature
	Parameters
	Return Values

	v3.GetTopology
	Method Signature
	Parameters
	Return Values

	v4.GetInfoString
	Method Signature
	Parameters
	Return Values

	v4.GetInfoStringProperties
	Method Signature
	Parameters
	Return Values

	v4.SetInfoString
	Method Signature
	Parameters
	Return Values

	v4.SetInfoStringProperties
	Method Signature
	Parameters
	Return Values

	v5.SetRemoteWindowId
	Method Signature
	Parameters
	Return Values

	v5.GetRemoteWindowId
	Method Signature
	Parameters
	Return Values

	VDPScreenCapture Functions
	v1.Init
	Method Signature
	Parameters
	Return Values

	v1.Exit
	Method Signature
	Parameters
	Return Values

	v1.GetLocalTopology
	Method Signature
	Parameters
	Return Values

	v1.GetRemoteTopology
	Method Signature
	Parameters
	Return Values

	v1.GetHostWindowByRect
	Method Signature
	Parameters
	Return Values

	v1.GetHostWindowByPoint
	Method Signature
	Parameters
	Return Values

	v1.MapLocalToRemoteRect
	Method Signature
	Parameters
	Return Values

	v1.MapRemoteToLocalRect
	Method Signature
	Parameters
	Return Values

	v2.IsApplicationMode
	Method Signature
	Parameters
	Return Values

	v2.ReadBackScreen
	Method Signature
	Parameters
	Return Values

	v2.ReadBackRelease
	Method Signature
	Parameters
	Return Values

	v3.IsReadBackWindowSupported
	Method Signature
	Return Values

	v3.ReadBackWindowBegin
	Method Signature
	Parameters
	Return Values

	v3.ReadBackWindowEnd
	Method Signature
	Parameters
	Return Values

	v3.ReadBackWindow
	Method Signature
	Parameters
	Return Values

	v4.GetReadBackCapabilities
	Method Signature
	Parameters
	Return Values

	v4.ReadBackWindowBegin
	Method Signature
	Parameters
	Return Values

	v4.GetReadBackWindowInfo
	Method Signature
	Parameters
	Return Values

	v4.RegisterForReadBackRequests
	Method Signature
	Parameters
	Return Values

	v4.UnregisterForReadBackRequests
	Method Signature
	Parameters
	Return Values

	v4.ReadBackRequestUpdate
	Method Signature
	Parameters
	Return Values

	Channel Sinks
	v1.OnChannelStateChanged
	Method Signature
	Parameters
	Return Values

	v1.OnConnectionStateChanged
	Method Signature
	Parameters
	Return Values

	v1.OnPeerObjectCreated
	Method Signature
	Parameters
	Return Values

	RPC Sinks
	v1.OnAbort
	Method Signature
	Parameters
	Return Values

	v1.OnDone
	Method Signature
	Parameters
	Return Values

	v1.OnInvoke
	Method Signature
	Parameters
	Return Values

	v1.OnObjectStateChanged
	Method Signature
	Parameters
	Return Values

	Overlay Sinks
	VDPOverlayGuest_Sink Functions
	v1.OnOverlayCreateError
	Method Signature
	Parameters
	Return Values

	v1.OnOverlayReady
	Method Signature
	Parameters
	Return Values

	v1.OnOverlayRejected
	Method Signature
	Parameters
	Return Values

	v1.OnUserMsg (Guest Sink)
	Method Signature
	Parameters
	Return Values

	VDPOverlayClient_Sink Functions
	v1.OnLayoutModeChanged
	Method Signature
	Parameters
	Return Values

	v1.OnOverlayDisabled
	Method Signature
	Parameters
	Return Values

	v1.OnOverlayEnabled
	Method Signature
	Parameters
	Return Values

	v1.OnUserMsg (Client Sink)
	Method Signature
	Parameters
	Return Values

	v1.OnWindowObscured
	Method Signature
	Parameters
	Return Values

	v1.OnWindowPositionChanged
	Method Signature
	Parameters
	Return Values

	v1.OnWindowRegistered
	Method Signature
	Parameters
	Return Values

	v1.OnWindowSizeChanged
	Method Signature
	Parameters
	Return Values

	v1.OnWindowUnregistered
	Method Signature
	Parameters
	Return Values

	v1.OnWindowVisible
	Method Signature
	Parameters
	Return Values

	v3.OnLayerChanged
	Method Signature
	Parameters
	Return Values

	v3.OnTopologyChanged
	Method Signature
	Parameters
	Return Values

	Screen Capture Sinks
	v1.OnTopologyChanged
	Method Signature
	Parameters
	Return Values

	v3.OnReadBackWindowReady
	Method Signature
	Parameters
	Return Values

	v3.OnReadBackWindowDestroyed
	Method Signature
	Parameters
	Return Values

	v3.OnReadBackWindowRemoteError
	Method Signature
	Parameters
	Return Values

	v4.OnReadBackWindowLocationChanged
	Method Signature
	Parameters
	Return Values

	v4.OnReadBackWindowImageChanged
	Method Signature
	Parameters
	Return Values

	v4.OnReadBackRequest
	Method Signature
	Parameters
	Return Values

