
Android Intelligence SDK Network Insights
Clients User Guide
This page acts as a guide on how to implement the Network Insights using our supported Http(s) clients.

• HttpUrlConnection
• HttpsUrlConnection
• OkHttp

HttpUrlConnection

To report incoming and outgoing network connections previously made using the HttpUrlConnection class, use the provided
InstrumentedHttpUrlConnection wrapper class. The wrapper class will function in the exact same was as the original
HttpUrlConnection class so there is no need to change the implementation.

Here's an example of how to construct and use this client:

InstrumentedHttpUrlConnection Example

 /**
 * Create an Instance of InstrumentedHttpUrlConnection.
 * The connection is opened from the provided URL.
 *
 * @param u URL to open the connection to.
 * @throws IOException if an I/O exception occurs.
 */
 public InstrumentedHttpUrlConnection(URL u) throws IOException

 /**
 * Create an Instance of InstrumentedHttpUrlConnection with a Proxy.
 * The connection is opened from the provided URL with the given proxy.
 *
 * @param u URL to open the connection to.
 * @param proxy Proxy which the connection to the URL will be opened with.
 * @throws IOException if an I/O exception occurs.
 */
 public InstrumentedHttpUrlConnection(URL u, Proxy proxy) throws IOException

 /**
 * Create an Instance of InstrumentedHttpUrlConnection as a wrapper around an existing
 * HttpUrlConnection instance.
 *
 * @param httpURLConnection HttpUrlConnection instance to instrument.
 * @throws IOException if an I/O exception occurs.
 */
 public InstrumentedHttpUrlConnection(HttpURLConnection httpURLConnection)

 // Usage Example

 /**
 * Get Image Data and read response
 */
 val url = "http://httpbin.org/image"
 val connection = InstrumentedHttpUrlConnection(URL(url))

 val bout = ByteArrayOutputStream()
 ` try {
 val buffer = ByteArray(1024)

 var length: Int
 while (connection.inputStream.read(buffer).also { length = it } != -1) {
 bout.write(buffer, 0, length)
 }
 } catch(exception: Exception) {
 Log.e(TAG, "Error occurred during image request")
 } finally {
 connection.disconnect()
 }

 /**
 * Post Data using InstrumentedOutputStream and read response
 */
 val connection = InstrumentedHttpUrlConnection(URL("https://reqres.in/api/users"))
 connection.requestMethod = "POST"
 connection.setRequestProperty("Content-Type", "application/json")
 connection.setRequestProperty("Accept", "application/json")
 connection.doOutput = true
 val jsonInputString = "{\"name\": \"Lain\", \"job\": \"Programmer\"}"

 // Use InstrumentedOutputStream to Post data
 connection.outputStream.use { os ->
 val input = jsonInputString.toByteArray(charset("utf-8"))
 os.write(input, 0, input.size)
 }

 // Get our response
 var result = ""
 BufferedReader(
 InputStreamReader(connection.inputStream, "utf-8")
).use { br ->
 val response = StringBuilder()
 var responseLine: String? = null
 while (br.readLine().also { responseLine = it } != null) {
 response.append(responseLine!!.trim { it <= ' ' })
 }
 result = response.toString()
 }
 connection.disconnect()

HttpsUrlConnection
To report incoming and outgoing network connections previously made using the HttpsUrlConnection class, use the provided
InstrumentedHttpsUrlConnection wrapper class. The wrapper class will function in the exact same was as the original
HttpsUrlConnection class so there is no need to change the implementation.
As this is an HTTPS client, remember to only use HTTPS connections, otherwise InstrumentedHttpUrlConnection may be
more appropriate.

Here's an example of how to construct and use this client:

InstrumentedHttpUrlConnection Example

 /**
 * Create an Instance of InstrumentedHttpsUrlConnection.
 * The connection is opened from the provided URL.
 *
 * @param u URL to open the connection to.
 * @throws IOException if an I/O exception occurs.
 */
 public InstrumentedHttpsUrlConnection(URL u) throws IOException

 /**
 * Create an Instance of InstrumentedHttpsUrlConnection with a Proxy.
 * The connection is opened from the provided URL with the given proxy.
 *
 * @param u URL to open the connection to.
 * @param proxy Proxy which the connection to the URL will be opened with.
 * @throws IOException if an I/O exception occurs.
 */
 public InstrumentedHttpsUrlConnection(URL u, Proxy proxy) throws IOException

 /**
 * Create an Instance of InstrumentedHttpsUrlConnection as a wrapper around an existing
 * HttpUrlConnection instance.
 *
 * @param httpsURLConnection HttpsUrlConnection instance to instrument.
 * @throws IOException if an I/O exception occurs.
 */
 public InstrumentedHttpUrlConnection(HttpsURLConnection httpsURLConnection)

 // Usage Example

 /**
 * Get Image Data and read response
 */
 val url = "https://httpbin.org/image"
 val connection = InstrumentedHttpsUrlConnection(URL(url))

 val bout = ByteArrayOutputStream()
 try {
 val buffer = ByteArray(1024)
 var length: Int
 while (connection.inputStream.read(buffer).also { length = it } != -1) {
 bout.write(buffer, 0, length)
 }
 } catch(exception: Exception) {
 Log.e(TAG, "Error occurred during image request")
 } finally {
 connection.disconnect()
 }

 /**
 * Post Data using InstrumentedOutputStream and read response
 */
 val connection = InstrumentedHttpsUrlConnection(URL("https://reqres.in/api/users"))
 connection.requestMethod = "POST"
 connection.setRequestProperty("Content-Type", "application/json")
 connection.setRequestProperty("Accept", "application/json")
 connection.doOutput = true
 val jsonInputString = "{\"name\": \"Lain\", \"job\": \"Programmer\"}"

 // Use InstrumentedOutputStream to Post data
 connection.outputStream.use { os ->
 val input = jsonInputString.toByteArray(charset("utf-8"))
 os.write(input, 0, input.size)

 }

 // Get our response
 var result = ""
 BufferedReader(
 InputStreamReader(connection.inputStream, "utf-8")
).use { br ->
 val response = StringBuilder()
 var responseLine: String? = null
 while (br.readLine().also { responseLine = it } != null) {
 response.append(responseLine!!.trim { it <= ' ' })
 }
 result = response.toString()
 }
 connection.disconnect()

OkHttp
The implementation for instrumenting OkHttp Clients has not changed since previous versions of the Intelligence SDK.

It must be called on the main UI thread after the OkHttpClient is set. Once the method is invoked, Intelligence SDK will
automatically log network calls made with the returned instrumented client to the Network Insights page of the Workspace
ONE Intelligence portal.

Here’s an example of how to instrument a client:

OkHttp Instrumentation Example

OkHttpClient uninstrumentedClient = new OkHttpClient();
OkHttpClient instrumentedClient =
Crittercism.getNetworkInstrumentation().instrumentOkHttpClient(uninstrumentedClient);
// Now you can use the instrumented client for network calls (on a different thread)
instrumentedClient.newCall(...).execute();

