
Inactivity Wipe
Inactivity Wipe is a feature of the Workspace ONE® platform. The feature

protects data at rest in a mobile application that has integrated the Workspace

ONE mobile software development kit. Enterprise data will be deleted from the

application when an extended period of user inactivity is detected.

The feature is controlled by configuration in the Workspace ONE Unified Endpoint

Manager (UEM) console, and applied by the Workspace ONE mobile Software

Development Kit (SDK). The feature is available in the SDK for Android, and in the

SDK for iOS.

Table of Contents
Overview..2

Description...2

Transition..4

Unit of Measure..6

Integration...7

Compatibility..7

Configuration...8

Programming Interface for Kotlin...9

Initialization...9

Compliance Check...10

Inactivity Timer Reset...10

Summary...11

Programming Interface for Swift...12

Initialization...12

Compliance Check..12

Inactivity Timer Reset...13

Summary...13

Appendix: Console User Interface..14

Appendix: User Interface for Android...15

Appendix: User Interface for iOS..16

Document Information..17

Technical Feature Guide

Inactivity Wipe Page 1 of 17

Overview
The inactivity wipe feature can protect data in a mobile application that has

integrated the Workspace ONE mobile SDK. If the feature is in use, the SDK will

delete enterprise data from the application when an extended period of user

inactivity is detected. The SDK can process an inactivity wipe when the

application is offline or otherwise unable to receive wipe commands from the

management console.

Description
The feature works as follows.

Inactivity wipe is configured in the management console.

The feature can be configured in any type of Workspace ONE deployment. It

works on both managed and registered devices. (Registered devices were

sometimes referred to as unmanaged devices.)

The configuration of this feature can be one of the following:

Feature is on, and the allowed inactivity period is specified in days.

Feature is off.

The feature is off by default.

The inactivity wipe configuration is retrieved by the SDK instance in a mobile

application. Retrieval attempts are made according to a defined schedule and

set of events depending on device support.

The SDK checks for inactivity if a limit is configured:

Whenever the application initializes the SDK.

SDK initialization will take place, for example, when the application is launched

by the user and isn’t running already.

See Initialization for Kotlin and Initialization for Swift for details of the

programming interfaces.

Whenever the application instructs the SDK to check compliance.

This supports scenarios in which the application runs without initializing the

SDK, such as background synchronisation.

See Compliance Check for Kotlin and Compliance Check for Swift for details

of the programming interfaces.

Periodically when the application is in background, if supported by the device.

-

-

-

-

-

Technical Feature Guide

Inactivity Wipe Page 2 of 17

Some Android devices support background checking. No iOS nor iPadOS

device supports background checking.

The user is classed as active when either of the following is true:

The application is running in device foreground.

Part of the application user interface is opened, such as in a notification

interaction, for Android, or in an application extension, for iOS.

In some cases, the application code must notify the SDK when the user is active.

See Inactivity Timer Reset for Kotlin and Inactivity Timer Reset for Swift for

details of the programming interfaces.

If the length of time that has passed since the last user activity is longer than

the allowed inactivity period, the SDK executes an application wipe.

An application wipe includes the following.

All SDK application data encryption keys are deleted.

In the SDK for Kotlin, this includes the keys that underlie, for example, the

following classes in the programming interface:

MasterKeyManager

CertificateManager

SecurePreferences

In the SDK for Swift, this includes the keys that underlie the AWController

encrypt programming interface.

Any data encrypted by those interfaces cannot be decrypted after an

inactivity wipe.

All credentials from the application’s registration with the console are deleted,

including any electronic certificates.

If Workspace ONE Single Sign-On (SSO) for apps is in use, then the

application will attempt to re-register automatically. Another app, such as the

anchor app, must be available and mustn’t itself have been wiped. Automatic

registration will be as the same end user.

If SSO isn’t in use, or automatic registration isn’t available, then the user will

have to register manually.

Note that the SDK doesn’t report inactivity wipe to the UEM.

In some cases, the SDK depends on the application code to execute the wipe.

See Initialization for Kotlin and Initialization for Swift for details of the

programming interfaces.

-

-

-

-

Technical Feature Guide

Inactivity Wipe Page 3 of 17

After executing an inactivity wipe, the SDK shows an informative message in the

user interface.

In some cases, the SDK depends on the application code to show the message.

See Initialization for Kotlin and Initialization for Swift for details of the

programming interfaces.

See also the User Interface for Android and User Interface for iOS screen

captures in the appendix to this document.

The SDK notifies the application when or after the inactivity wipe has been

processed. See Initialization for Kotlin and Initialization for Swift for details of the

programming interfaces.

Transition
Transition between this feature being on and off for an individual application on a

device works as follows.

Off to on, the sequence will be:

1. The on setting is configured in the management console.

2. Later, the updated configuration is retrieved by the SDK instance in the
application.

3. The next and subsequent times the application is started, the SDK will check
for inactivity and take action if the check fails.

In theory, an inactivity check could be made at the point of retrieval. In practice,

retrieval can only take place when the user is active, so that check would always

pass.

On to off, the sequence will be:

1. The off setting is configured in the management console.

2. Next time the application starts, the SDK checks for inactivity as before.

If the check fails, an inactivity wipe will be processed. After the inactivity

wipe, the user will register manually, or be re-registered automatically.

3. The updated configuration is retrieved by the SDK instance in the application.

4. The next and subsequent times the application is started, the SDK won’t

check for inactivity.

Note that updating the configuration in the UEM won’t save applications that

have already exceeded the inactivity period, nor applications that exceed the

period before they can retrieve the updated configuration.

Technical Feature Guide

Inactivity Wipe Page 4 of 17

Transitions from longer to shorter inactivity periods, or shorter to longer, will be

handled similarly to transitions from off to on, or on to off, respectively.

Technical Feature Guide

Inactivity Wipe Page 5 of 17

Unit of Measure
The unit of measure for inactivity configuration is days. One day is interpreted by

the SDK as twenty-four hours of elapsed time. The interpretation ignores calendar

days, changes in time zone, and daylight saving time.

The following example illustrates the interpretation for time zones.

Scenario:

Inactivity period for the application is configured as 2 days.

User is active until Monday at 6pm Pacific, then travels to the Eastern time zone.

User remains inactive until Wednesday 7pm Eastern and then opens the
application.

The user has been inactive for:

49 hours of calendar time, 2 days plus 1 hour.

46 hours of elapsed time, 7pm Eastern is 4pm Pacific.

Because the SDK interprets a period of 2 days as 48 hours elapsed, the inactivity

period hasn’t expired.

Technical Feature Guide

Inactivity Wipe Page 6 of 17

Integration
To integrate the feature into your application, follow the instructions below.

Compatibility
Before you begin integration, ensure you have access to compatible versions of

software. The following table shows the version numbers of the Workspace ONE

components in which this feature first became available.

Software Available

Workspace ONE SDK for Android 20.4

Workspace ONE SDK for iOS 20.2

Workspace ONE management console 20.3

Earlier versions of the UEM don’t offer inactivity wipe in their user interface, and

don’t send any inactivity wipe configuration to SDK instances. In that case the

SDK will apply the default, which is that the setting is off and inactivity won’t be

checked.

Technical Feature Guide

Inactivity Wipe Page 7 of 17

Configuration
This feature can be configured in the Workspace ONE management console. The

following instructions are intended for application developers or other users

wishing to try out the feature quickly. Full documentation can be found in the

online help.

1. Log in to the management console.

The dashboard will be displayed.

2. Select an organization group.

By default, the Global group is selected.

3. Navigate to: Groups & Settings, All Settings, Apps, Settings and Policies, SDK

App Compliance.

This opens the SDK App Compliance configuration screen, on which a number

of settings can be switched on and off, and configured.

4. For the Application Inactivity setting, select Enabled.

When Enabled is selected, further controls will be displayed.

5. Use the controls to configure the inactivity wipe feature.

6. Select Save to commit your changes to the configuration.

See also the Console User Interface screen capture in the appendix to this

document.

Technical Feature Guide

Inactivity Wipe Page 8 of 17

Programming Interface for Kotlin
The following parts of the SDK programming interface for Kotlin are relevant to

this feature.

Use of this feature requires Framework integration of the SDK for Android, i.e.

adding the AWFramework library.

Initialization
The following code snippets illustrate the general way to initialize the SDK, and

handle inactivity wipe. Note that the SDK for Kotlin depends on the application

code to execute the wipe at a time when it can do so without losing the integrity

of its data.

Technical Feature Guide

Inactivity Wipe Page 9 of 17

class AirWatchSDKIntentService: AirWatchSDKBaseIntentService() {

 override fun onClearAppDataCommandReceived(context: Context, reasonCode: ClearReasonCode) {

 // This method is invoked by the SDK to wipe the application data, for example

 // following a failed inactivity check.

 //

 // Run application code to do the following from here:

 //

 // - Delete any data that was encrypted with a key that is being deleted.

 // - Delete any data that wasn't encrypted.

 // - Delete any data that was encrypted with a key from elsewhere.

 // The following SDK method must be called at some point in the implementation.

 SDKContextManager.getSDKContext().sdkClearAction.clear(SDKClearAction.Type.ALL)

 // The application must show an informative message to the user, if the wipe is due to

 // a failed inactivity check. The SDK comes with a built-in screen for this purpose.

 if (reasonCode == ClearReasonCode.APP_INACTIVITY) {

 // The following SDK method will show the built-in screen, if the application is in

 // foreground and able to open the screen.

 const shown = ComplianceViolationActivity

 .showInactiveComplianceViolationScreen(context)

 // `shown` will be false if the screen wasn't shown. The application must record the

 // wiped state persistently and show an informative message at the next opportunity

 // in that case.

 }

 }

 override fun onApplicationConfigurationChange(

 applicationConfiguration: Bundle

) {

 // ...

 }

 override fun onApplicationProfileReceived(

 context: Context,

 profileId: String,

 appProfile: ApplicationProfile

){

 // ...

 }

 override fun onAnchorAppStatusReceived(context: Context, appStatus: AnchorAppStatus) {

 // ...

 }

 override fun onAnchorAppUpgrade(context: Context, isUpgrade: Boolean) {

 // ...

 }

}

Compliance Check
There is no explicit compliance check interface in the SDK for Kotlin. An implicit

compliance check is run whenever the application, or a service, starts and this

applies even to background execution.

Inactivity Timer Reset
The following code snippet illustrates how to reset the user inactivity timer

explicitly.

Technical Feature Guide

Inactivity Wipe Page 10 of 17

 // ... In the Intent handling, for example.

 // Reset the user inactivity timer, in case inactivity wipe is configured.

 ApplicationLifecycleUtil.resetInteractionTime()

 // ...

The SDK resets the user inactivity timer implicitly whenever the application comes

to the device foreground. An explicit reset is required only when user interaction

takes place without the application coming to the device foreground, such as in an

Android notification.

Summary
To integrate this feature into a Workspace ONE Kotlin application:

Ensure that onClearAppDataCommandReceived is implemented.

If the user can interact without the application coming to the device foreground,
call resetInteractionTime whenever they do so.

This concludes integration with the SDK for Kotlin.

Technical Feature Guide

Inactivity Wipe Page 11 of 17

Programming Interface for Swift
The following parts of the SDK programming interface for Swift are relevant to

this feature.

Initialization
The following code snippets illustrate the general way to initialize the SDK, and

handle inactivity wipe.

Class ControllerDelegate: AWControllerDelegate {

 func controllerDidFinishInitialCheck(error: NSError?) {

 // This method is invoked when the SDK has finished initialization.

 //

 // Run application code that is dependent on SDK start-up from here.

 //

 // In the case that the need for a data wipe is determined during start-up,

 // this method is invoked later than controllerDidWipeCurrentUserData, below.

 }

 func controllerDidWipeCurrentUserData() {

 // This method is invoked after the SDK has wiped data, for example

 // following a failed inactivity check.

 //

 // Run application code to do the following from here:

 //

 // - Delete any data that was encrypted with a key that has been deleted.

 // - Delete any data that wasn't encrypted.

 // - Delete any data that was encrypted with a key from elsewhere than the SDK.

 }

}

// At start, for example in the didFinishLaunchingWithOptions implementation:

AWController.clientInstance().delegate = controllerDelegate;

// Next line will initialize the SDK. Initialization processing by the SDK

// includes an inactivity check.

AWController.clientInstance().start()

Note that there isn’t a mode to initialize the SDK without making a compliance

check.

Compliance Check
The following code snippets illustrate how to make an explicit compliance check.

ComplianceEvaluationController().evaluateComplianceStatus { (status) in

 if status == .nonCompliant {

 // The application instance isn't in compliance, for example, the inactivity

 // check failed. Encryption keys and credentials have been wiped.

 //

 // Run application code to do the following from here:

 //

 // - Delete any data that was encrypted with a key that has been deleted.

 // - Delete any data that wasn't encrypted.

 // - Delete any data that was encrypted with a key from elsewhere than the SDK.

 }

}

Note that an implicit compliance check is run whenever the SDK is initialized. The

explicit check interface supports applications that sometimes access data without

Technical Feature Guide

Inactivity Wipe Page 12 of 17

starting the SDK, for example in background.

Inactivity Timer Reset
There is no explicit inactivity timer reset interface in the SDK for Swift. The SDK

resets the timer implicitly during initialization, after checking for inactivity. The

application must initialize the SDK to open any of its user interface, for example as

part of an App Extension, so an explicit reset wouldn’t ever be needed.

Summary
To integrate this feature into a Workspace ONE Swift application:

Ensure that controllerDidWipeCurrentUserData is implemented.

If the application accesses data without initializing the SDK, add a call to
evaluateComplianceStatus wherever it does so.

This concludes integration with the SDK for Swift.

Technical Feature Guide

Inactivity Wipe Page 13 of 17

Appendix: Console User Interface
The following screen capture shows this feature’s configuration in the

management console.

Screen capture 1: Console User Interface

Technical Feature Guide

Inactivity Wipe Page 14 of 17

Appendix: User Interface for Android
The following screen capture shows the message displayed to the end user after

an inactivity wipe.

Screen capture 2: Wiped Message for Android

Technical Feature Guide

Inactivity Wipe Page 15 of 17

Appendix: User Interface for iOS
The following screen capture shows the message displayed to the end user after

an inactivity wipe.

Screen capture 3: Wiped Message for iOS

Technical Feature Guide

Inactivity Wipe Page 16 of 17

Document Information

Revision History

23jul2020 Initial Publication.

12Feb2025 Updated License

License
This software is licensed under the Omnissa Software Development Kit (SDK)

License Agreement; you may not use this software except in compliance with the

License.

Unless required by applicable law or agreed to in writing, software distributed

under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR

CONDITIONS OF ANY KIND, either express or implied. See the License for the

specific language governing permissions and limitations under the License.

This software may also utilize Third-Pary Open Source Software as detailed within

the Android_open_source_licenses.txt, ios_open_source_licenses.txt file.

Technical Feature Guide

Inactivity Wipe Page 17 of 17

https://static.omnissa.com/sites/default/files/omnissa-sdk-agreement.pdf
https://static.omnissa.com/sites/default/files/omnissa-sdk-agreement.pdf
https://github.com/euc-releases/Android-WorkspaceONE-SDK/blob/main/open_source_licenses.txt
https://github.com/euc-releases/iOS-WorkspaceONE-SDK/blob/main/open_source_licenses.txt

