
Application Key Management

Workspace ONE for Android
The Workspace ONE SDK for Android provides various tools for managing an

application’s cryptographic keys. Tools include secure random number

generators, OpenSSL-based cryptographic functions, and passcode-based

encrypted storage for a master data key.

This document is a collection of content from the earlier developer guide that

hasn’t yet been moved to the new integration guide set.

Table of Contents
Application Key Management Guidelines..2

Key Generation...2

Key Wrapping and Unwrapping...3

Key Lifecycle Tracking...3

Key Storage...3

Sample Code...3

Document Information..5

Developer Guide

Application Key Management Page 1 of 5

Application Key Management Guidelines
Keep to the following guidelines for key management in your application.

The Master Data Key is a key that wraps and unwraps all an application’s keys.

Applications must designate one key as the master data key (MDK) and use it

during wrapping and unwrapping operations of other application keys. You can

use the Workspace ONE SDK’s secure preferences for storage and protection of

MDK. Access it through SDKContext:

SDKContextManager.getSDKContext().appSecurePreferences

Usually, keys that are stored and retrieved go through several phases.

Store keys

1. Get key to be stored

2. AES key wrap with masterDataKey

3. Encode to Base64

4. Store key in storage

Retrieve keys

1. Get key from storage

2. Decode from base 64

3. AES key unwrap with masterDataKey

4. Return key with lifecycle tracking

Key Generation
One option to generate cryptographically strong keys is using SecureRandom,

and applications can use the default SecureRandom implementation that

platforms provide.

Apps can also use the implementation provided by the Workspace ONE SDK for

Android.

SecureRandom.getInstance(AWSecurityProvider.AW_OPENSSL_SECURE_RANDOM)

Developer Guide

Application Key Management Page 2 of 5

Key Wrapping and Unwrapping
The designated MDK must wrap and unwrap all application keys before the keys

can be stored on a nonvolatile medium. It is an industry standard and a common

security practice to do wrapping and unwrapping operations instead of

conventional encryption operations for anything that can be considered a key

material. Cryptographic APIs are provided by the Workspace ONE SDK for

Android to perform these operations.

private val cryptUtil = OpenSSLCryptUtil.getInstance()!!

val unWrappedKey = cryptUtil.aesUnwrapKey(masterDataKey, wrappedKey)

val wrappedKey = cryptUtil.aesWrapKey(masterDataKey, key!!)

The appUnwrappedKey and appWrappedKey refer to the application’s keys in

unwrapped and wrapped form.

Key Lifecycle Tracking
All keys in an application are vulnerable to memory dump attacks, which

compromise the security and integrity of the application. The Workspace ONE

SDK for Android provides tools to register keys to be tracked and destroyed

whenever the SDK session locks out.

KeyGuard.secure(keyToBeProtected, KeyGuard.KeyLifespan.CONTEXT)

Note: Any keys that are deep copied or duplicated without a reference to the

original key are not protected. It is the application’s responsibility to secure the

deep copied or duplicated keys in such cases.

Key Storage
Store keys only after the wrapping operation. You can store them in a non-secure

space, like an SQLite database. Consider using SQLite with Room from AndroidX

Jetpack for convenience and because it is standard for Android applications.

Note: It is the application’s responsibility to clear all the application’s keys when

Workspace ONE SDK for Android performs a wipe. Failure to clear the

application’s keys leaves keys in an irretrievable state.

Sample Code
The Workspace ONE SDK for Android comes with a sample implementation that

does all the key management operations. Find the implementation in the

Workspace ONE SDK for Android release bundle, in the included SampleApp, in

the package:

com.sample.framework.dataKey

Developer Guide

Application Key Management Page 3 of 5

You can copy it and use it as is, or you can use it as a reference to build a custom

workflow based on your application’s requirements.

Developer Guide

Application Key Management Page 4 of 5

Document Information

Revision History

30jul2020 First publication, for 20.7 SDK for Android.

18Feb2025 Brand Revision

Legal

This software is licensed under the Omnissa Software Development Kit (SDK)

License Agreement; you may not use this software except in compliance with the

License.

Unless required by applicable law or agreed to in writing, software distributed

under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR

CONDITIONS OF ANY KIND, either express or implied. See the License for the

specific language governing permissions and limitations under the License.

This software may also utilize Third-Pary Open Source Software as detailed within

the open_source_licenses.txt file.

Developer Guide

Application Key Management Page 5 of 5

https://static.omnissa.com/sites/default/files/omnissa-sdk-agreement.pdf
https://static.omnissa.com/sites/default/files/omnissa-sdk-agreement.pdf
https://github.com/euc-releases/Android-WorkspaceONE-SDK/blob/main/open_source_licenses.txt

