
Base Integration Guide

Workspace ONE for Android
Android applications can be integrated with the Omnissa Workspace ONE® platform, by using its

mobile software development kit. Complete the tasks below as a base for feature integration.

This document is part of the Workspace ONE Integration Guide for Android set.

Table of Contents
Introduction..2

Integration Paths Diagram..5

Task: Add Client SDK..6

Project Structure Diagram..6

Software Development Kit Download Structure Diagram..7

Instructions...8

Task: Initialize Client SDK...13

Task: Add Framework...15

Task: Initialize Framework..18

Appendix: User Interface Screen Capture Images..25

Appendix: Troubleshooting...26

Document Information...27

Workspace ONE Integration Guide for Android

Base Integration Guide Page 1 of 27

Introduction
The tasks detailed below represent the basic steps in integrating your Android application with the

Workspace ONE platform. The tasks you will complete depend on the required integration level of

your application.

Integration at the Framework level is necessary if the application will make use of platform features

such as authentication, single sign-on, data encryption, or networking.

To integrate at the Client level, do the following tasks:

1. Add the Client SDK.

2. Initialize the Client SDK.

To integrate at the Framework level, do the following tasks:

1. Add the Client SDK.

2. Add the Framework.

3. Initialize the Framework.

Note that you don’t add Client SDK initialization if you are integrating at the Framework level.

Downloads
Omnissa provides this Software Development Kit (the “Software”) to you subject to the following

terms and conditions. By downloading, installing, or using the Software, you agree to be bound by

the terms of SDK License Agreement. If you disagree with any of the terms, then do not use the

Software.

For additional information, please visit the Omnissa Legal Center.

License
This software is licensed under the Omnissa Software Development Kit (SDK) License Agreement;

you may not use this software except in compliance with the License.

Unless required by applicable law or agreed to in writing, software distributed under the License is

distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either

express or implied. See the License for the specific language governing permissions and limitations

under the License.

That applies however you obtain or integrate the software.

Integration Guides
This document is part of the Workspace ONE Integration Guide for Android set.

See other guides in the set for

an overview of integration levels and the benefits of each.

details of the integration preparation tasks, which must be done before the tasks in this
document.

An overview that includes links to all the guides is available

in Markdown format, in the repository that also holds the sample code:

Omnissahttps://github.com/euc-releases/…IntegrationOverview.md

Workspace ONE Integration Guide for Android

Base Integration Guide Page 2 of 27

https://static.omnissa.com/sites/default/files/omnissa-sdk-agreement.pdf
https://www.omnissa.com/legal-center/
https://static.omnissa.com/sites/default/files/omnissa-sdk-agreement.pdf
https://github.com/euc-releases/workspace-ONE-SDK-integration-samples/blob/main/IntegrationGuideForAndroid/Guides/01Overview/WorkspaceONE_Android_IntegrationOverview.md

in Portable Document Format (PDF), on the Omnissa website:

https://developer.omnissa.com/…IntegrationOverview.pdf

Workspace ONE Integration Guide for Android

Base Integration Guide Page 3 of 27

https://developer.omnissa.com/docs/12354/WorkspaceONE_Android_IntegrationOverview.pdf

Compatibility
Instructions in this document have been tested with the following software versions.

Software Version

Workspace ONE SDK for Android 24.11

Workspace ONE management console 2306

Android Studio integrated development environment 2022.3.1

Gradle plugin for Android 8.2.2

Kotlin language 1.9.25

Workspace ONE Integration Guide for Android

Base Integration Guide Page 4 of 27

Integration Paths Diagram
The following diagram shows the tasks involved in base integration and the order in which they can

be completed. Integration Preparation is a prerequisite to base integration. Framework integration

is a prerequisite to integrating any of the framework features, which are covered by other guides.

Add Client SDK

Initialize
Client SDK

Add Framework

Initialize
Framework

Client-level
integration

Framework
base integration

Preparation

Start

Framework
Feature

Integrations

Diagram 1: Base Integration paths

Workspace ONE Integration Guide for Android

Base Integration Guide Page 5 of 27

Task: Add Client SDK
Adding the Client SDK is a Workspace ONE platform integration task for Android application

developers. It applies to all levels of platform integration.

If you haven’t installed your application via Workspace ONE at least once, then do so now. If you

don’t, the application under development won’t work when installed via the Android Debug Bridge

(adb). Instructions for installing via Workspace ONE can be found in the Integration Guides

document set, in the Integration Preparation guide.

The first step will be to set up the build configuration and files. These instructions assume that your

application has a typical project structure, as follows:

Project files in the root directory.

Application module in a sub-directory.

Separate build.gradle files for the project and application.

Project Structure Diagram
The following diagram illustrates the expected project directory structure, and the locations of

changes to be made.

Add flatDir repository.
Add dependencies.

Project root directory./

build.gradle

Application module sub-directory./

Check minimum Gradle Android plugin version.

build.gradle

/ libs/
Copy in the required files:

AirWatchSDK-Version.aar

gson-Version.jar

Diagram 2: Project structure and locations of changes

Tip: It might be easier to see the structure, and identify which Gradle file is which, in the Android

Studio project navigator if you select the Project view, instead of the Android view.

Workspace ONE Integration Guide for Android

Base Integration Guide Page 6 of 27

Software Development Kit Download Structure Diagram
The following diagram illustrates the directory structure of the SDK download.

Download archive

Documentation//

/ Libs/

/ AWPrivacy/

/ Javadocs/

/ AWFramework/

/ AWNetworkLibrary/

/ AWPrivacy/

/ ClientSDK/

AWFramework-Version.aar

/ dependencies/

Files for third party libraries.

open_source_license_ProductVersion.txt

/ Sample Code/

Other directories
have the same
structure as under
AWFramework/

Workspace ONE SDK Documentation.txt

The .txt files
include links to the
published
locations of the
documentation.

AWPrivacy.txt

WS1 SDK Agreement.pdf

Diagram 3: Download structure of the SDK for Android

Files from within the above structure are copied under your application project in the following

instructions.

Workspace ONE Integration Guide for Android

Base Integration Guide Page 7 of 27

Instructions
Proceed as follows.

Build Configuration and Files
First, update the build configuration and add the required library files.

1. Update the Gradle Android plugin version, if necessary.

In the project build.gradle file, check the Android plugin version. This is typically near the top of

the file, inside the buildscript block, in the dependencies sub-block. The top of the file might

look like this:

buildscript {

 ...

 repositories {

 ...

 }

 dependencies {

 classpath 'com.android.tools.build:gradle:8.2.2'

 ...

 }

}

In this example, the Gradle Android plugin version is 8.2.2

Ensure that the Gradle version is at least 8.2

The location of this change is shown in the Project Structure Diagram.

2. Add the required packaging and compile options.

In the application build.gradle file, in the android block, add the Java version compatibility

declarations shown in the following snippet.

...

android {

 compileSdk 34

 // Following blocks are added.

 kotlin {

 jvmToolchain 17

 }

 packagingOptions {

 exclude 'META-INF/kotlinx-serialization-runtime.kotlin_module'

 }

 // End of added blocks.

 defaultConfig {

 targetSdk 34

 ...

 }

 buildTypes {

 ...

 }

}

Workspace ONE Integration Guide for Android

Base Integration Guide Page 8 of 27

3. Add the required libraries to the build.

Still in the application build.gradle file, in the dependencies block, add references to the

required libraries. For example:

repositories {

 maven {

 url = uri("https://maven.pkg.github.com/euc-releases/Android-WorkspaceONE-SDK/")

 credentials {

 /**In gradle.properties file of root project folder, add github.user=GITHUB_USERNAME & github.token =GITHUB_ACCESS_TOKEN**/

 username = project.findProperty("github.user") ?: System.getenv("USERNAME")

 password = project.findProperty("github.token") ?: System.getenv("TOKEN")

 }

 }

 maven {

 url = uri("https://maven.pkg.github.com/euc-releases/ws1-intelligencesdk-sdk-android/")

 credentials {

 /**In gradle.properties file of root project folder, add github.user=GITHUB_USERNAME & github.token =GITHUB_ACCESS_TOKEN**/

 username = project.findProperty("github.user") ?: System.getenv("USERNAME")

 password = project.findProperty("github.token") ?: System.getenv("TOKEN")

 }

 }

}

dependencies {

 // Integrate Omnissa Workspace ONE at the Client level.

 //

 // - Omnissa provides this Software Development Kit (the “Software”) to

 // you subject to the following terms and conditions. By downloading,

 // installing, or using the Software, you agree to be bound by the terms

 // of https://static.omnissa.com/sites/default/files/omnissa-sdk-agreement.pdf

 // If you disagree with any of the terms, then do not use the Software.

 // For additional information, please visit the https://www.omnissa.com/legal-center/.

 //

 // - Review the Omnissa Privacy Notice and the Workspace ONE UEM Privacy

 // Disclosure for information on applicable privacy policies, and

 // for additional information, please visit the

 // https://www.omnissa.com/legal-center/

 implementation "com.airwatch.android:airwatchsdk:24.10"

}

The location of this change is shown in the Project Structure Diagram.

This completes the required changes to the build configuration. Build the application to confirm

that no mistakes have been made. After that, continue with the next step, which is Anchor Event

Handler Implementation.

In case you encounter an error, check the [Early Version Support Build Error] first.

If you haven’t installed your application via Workspace ONE at least once, then the application

under development won’t work when installed via the Android Debug Bridge (adb). Instructions for

installing via Workspace ONE can be found in the Integration Guides document set, in the

Integration Preparation guide.

Workspace ONE Integration Guide for Android

Base Integration Guide Page 9 of 27

Anchor Event Handler Implementation
The Workspace ONE Client SDK runtime receives various essential notifications from the

management console. An implementation of a specific Android broadcast receiver and action

handler must be added to your application to support this. From SDK 23.04 onwards, application

need not add implementation for AirWatchSDKBaseIntentService, and must be removed.

Proceed as follows.

1. Implement a Workspace ONE SDK Event handler class.

Add a new class to your application.

Declare the new class and implement WS1AnchorEvents interface.

While upgrading to SDK 23.04 or above, migrate AirWatchSDKBaseIntentService API
implementation to WS1AnchorEvents.

In Java, the class could look like this:

public class AppWS1AnchorEvents implements WS1AnchorEvents {

 @Override

 public void onClearAppDataCommandReceived(Context context, ClearReasonCode reasonCode) {}

 @Override

 public void onApplicationConfigurationChange(Bundle applicationConfiguration, Context context) {}

 @Override

 public void onApplicationProfileReceived(

 Context context,

 String profileId,

 ApplicationProfile awAppProfile) {}

 @Override

 public void onAnchorAppStatusReceived(Context context, AnchorAppStatus awAppStatus) {}

 @Override

 public void onAnchorAppUpgrade(Context context, boolean isUpgrade) {}

}

In Kotlin, the class could look like this:

class AppWS1AnchorEvents : WS1AnchorEvents {

 override fun onClearAppDataCommandReceived(context: Context?, reasonCode: ClearReasonCode?) {}

 override fun onApplicationConfigurationChange(

 applicationConfiguration: Bundle?,

 context: Context?,

) {}

 override fun onApplicationProfileReceived(

 context: Context?,

 profileId: String?,

 awAppProfile: ApplicationProfile?) {}

 override fun onAnchorAppStatusReceived(context: Context?, awAppStatus: AnchorAppStatus?) {}

 override fun onAnchorAppUpgrade(context: Context?, isUpgrade: Boolean) {}

}

-

-

-

Workspace ONE Integration Guide for Android

Base Integration Guide Page 10 of 27

2. Declare the permission and interaction filter.

In the Android manifest file, inside the manifest block but outside the application block, add

declarations like the following.

<?xml version="1.0" encoding="utf-8"?>

<manifest ...>

<!-- Following declarations are added -->

<uses-permission android:name="com.airwatch.sdk.BROADCAST" />

<!-- Following tag applies to compileSdkVersion 30 or later. -->

<queries>

 <intent>

 <action android:name="com.airwatch.p2p.intent.action.PULL_DATA" />

 </intent>

</queries>

<!-- End of added declarations.>

<application ...>

...

3. Declare the notification receiver. From SDK 23.04 onwards, declaration for

AirWatchSDKBaseIntentService must be removed from manifest.

In the Android manifest file, inside the application block, add receiver declaration like the

following.

<application>

 ...

 <receiver

 android:name="com.airwatch.sdk.AirWatchSDKBroadcastReceiver"

 android:permission="com.airwatch.sdk.BROADCAST" >

 <intent-filter>

 <action android:name="${applicationId}.airwatchsdk.BROADCAST" />

 </intent-filter>

 <intent-filter>

 <action

 android:name="com.airwatch.intent.action.APPLICATION_CONFIGURATION_CHANGED"

 />

 <!--

 In the host attribute, replace com.your.package with the package name of your

 application.

 -->

 <data android:scheme="app" android:host="com.your.package" />

 </intent-filter>

 <intent-filter>

 <action android:name="android.intent.action.PACKAGE_ADDED" />

 <action android:name="android.intent.action.PACKAGE_REMOVED" />

 <action android:name="android.intent.action.PACKAGE_REPLACED" />

 <action android:name="android.intent.action.PACKAGE_CHANGED" />

 <action android:name="android.intent.action.PACKAGE_RESTARTED" />

 <data android:scheme="package" />

 </intent-filter>

 </receiver>

</application>

Workspace ONE Integration Guide for Android

Base Integration Guide Page 11 of 27

4. Apps need to implement SDKClientConfig in their Application class and override

getEventHandler() and return WS1AnchorEvents Implementation object. From SDK 23.04

onwards, application need to migrate to SDKClientConfig instead of

AirWatchSDKBaseIntentService.

 public class AppApplication extends Application implements SDKClientConfig {

 @NonNull

 @Override

 public WS1AnchorEvents getEventHandler() {

 return new AppWS1AnchorEvents();

 }

 }`

This completes the required anchor event handler implementation. Build the application to confirm

that no mistakes have been made.

If you haven’t installed your application via Workspace ONE at least once, then the application

under development won’t work when installed via the Android Debug Bridge (adb). Instructions for

installing via Workspace ONE can be found in the Integration Guides document set, in the

Integration Preparation guide.

Next Steps
After completing the above, continue with the next task, which could be either of the following.

Initialize the Client SDK, if your application will use only Client-level integration.

Add the Framework, otherwise.

Workspace ONE Integration Guide for Android

Base Integration Guide Page 12 of 27

Task: Initialize Client SDK
Client SDK initialization is a Workspace ONE platform integration task for Android application

developers. It applies only to Client-level integration, not to Framework integration.

The Client SDK initialization task is dependent on the Add the Client SDK task. The following

instructions assume that the dependent task is complete already.

SDKManager
The main class of the Client SDK is SDKManager. It must be initialized before use. Initialize it by

calling the init class method. The call must be on a background thread. An Android Context

object is required, which could be an Activity instance for example.

In Java, code for an Activity that initializes the SDKManager could look like this:

public class MainActivity extends Activity {

 SDKManager sdkManager = null;

 @Override

 protected void onCreate(@Nullable Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 ...

 startSDK();

 }

 private void startSDK() { new Thread(new Runnable() {

 @Override

 public void run() {

 try {

 final SDKManager initSDKManager = SDKManager.init(MainActivity.this);

 sdkManager = initSDKManager;

 toastHere(

 "Workspace ONE console version:" + initSDKManager.getConsoleVersion());

 }

 catch (Exception exception) {

 sdkManager = null;

 toastHere(

 "Workspace ONE failed " + exception + ".");

 }

 }

 }).start(); }

 private void toastHere(final String message) {runOnUiThread(new Runnable() {

 @Override

 public void run() {

 Toast.makeText(MainActivity.this, message, Toast.LENGTH_LONG).show();

 }

 });}

 ...

}

Workspace ONE Integration Guide for Android

Base Integration Guide Page 13 of 27

In Kotlin, code for an Activity that initializes the SDKManager could look like this:

class MainActivity : Activity() {

 private var sdkManager: SDKManager? = null

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 ...

 startSDK()

 }

 private fun startSDK() { thread {

 try {

 val initSDKManager = SDKManager.init(this)

 sdkManager = initSDKManager

 toastHere("Workspace ONE console version:${initSDKManager.consoleVersion}")

 }

 catch (exception: Exception) {

 sdkManager = null

 toastHere("Workspace ONE failed $exception.")

 }

 } }

 private fun toastHere(message: String) { runOnUiThread {

 Toast.makeText(this, message, Toast.LENGTH_LONG).show()

 } }

 ...

}

Calling the init method completes SDK Manager initialization. Build and run the application to

verify that no mistakes have been made.

Next Steps
After the SDKManager instance has been received from the init call, its other methods can be

called. Check the reference documentation for details of the programming interface.

This completes Client-level integration.

Workspace ONE Integration Guide for Android

Base Integration Guide Page 14 of 27

Task: Add Framework
Adding the Framework is a Workspace ONE platform integration task for Android application

developers. Adding the Framework is necessary if the application will make use of platform

features such as authentication, single sign-on, data encryption, or networking.

This task is dependent on the Add the Client SDK task. The following instructions assume that the

dependent task is complete already.

Build Configuration and Files
This task involves changing your application project’s build configuration and files. These

instructions assume that your application has a typical project structure, same as the Add Client

SDK task, as shown in the Project Structure Diagram.

A number of libraries will be added to the project. These can be divided into the following

categories.

Workspace ONE libraries that are part of the SDK.

Third party libraries that are distributed with the SDK.

Third party libraries that are hosted remotely, for example in a Maven repository, and included via
Gradle.

Proceed as follows.

1. Add the required libraries to the build.

In the application build.gradle file, in the dependencies block, add references to the required

libraries. For example:

repositories {

 maven {

 url = uri("https://maven.pkg.github.com/euc-releases/Android-WorkspaceONE-SDK/")

 credentials {

 /**In gradle.properties file of root project folder, add github.user=GITHUB_USERNAME & github.token =GITHUB_ACCESS_TOKEN**/

 username = project.findProperty("github.user") ?: System.getenv("USERNAME")

 password = project.findProperty("github.token") ?: System.getenv("TOKEN")

 }

 }

 maven {

 url = uri("https://maven.pkg.github.com/euc-releases/ws1-intelligencesdk-sdk-android/")

 credentials {

 /**In gradle.properties file of root project folder, add github.user=GITHUB_USERNAME & github.token =GITHUB_ACCESS_TOKEN**/

 username = project.findProperty("github.user") ?: System.getenv("USERNAME")

 password = project.findProperty("github.token") ?: System.getenv("TOKEN")

 }

 }

}

dependencies {

 // Integrate Omnissa Workspace ONE at the Client level.

 //

 // - Omnissa provides this Software Development Kit (the “Software”) to

 // you subject to the following terms and conditions. By downloading,

 // installing, or using the Software, you agree to be bound by the terms

 // of https://static.omnissa.com/sites/default/files/omnissa-sdk-agreement.pdf

 // If you disagree with any of the terms, then do not use the Software.

 // For additional information, please visit the https://www.omnissa.com/legal-center/.

 //

 // - Review the Omnissa Privacy Notice and the Workspace ONE UEM Privacy

 // Disclosure for information on applicable privacy policies, and

 // for additional information, please visit the

 // https://www.omnissa.com/legal-center/

 implementation "com.airwatch.android:awframework:24.07"

}

Workspace ONE Integration Guide for Android

Base Integration Guide Page 15 of 27

Your application might already require different versions of some of the same libraries required

by the SDK. Warning messages will be generated in the build output in that case, for example

stating that there are incompatible JAR files in the classpath.

You can resolve this by selecting one or other version, either the SDK requirement or your app’s

original requirement.

In principle, the SDK isn’t supported with versions other than those given in the above. In

practice however, problems are unlikely to be encountered with later versions.

2. Add annotation processor support.

In the application build.gradle file, add the kotlin-kapt plugin. The plugin can be added in the

plugins block at the start of the file, for example as shown in the following snippet.

plugins {

 id 'com.android.application'

 id 'kotlin-android'

 id 'kotlin-android-extensions'

 // Following line adds the required plugin.

 id 'kotlin-kapt'

}

...

3. Add the required packaging and compile options.

Still in the application build.gradle file, in the android block, add the packaging option shown in

the following snippet.

...

android {

 compileSdk 34

 // Following block is added.

 packagingOptions {

 pickFirst '**/*.so'

 }

 // End of added block.

 defaultConfig {

 targetSdk 34

 ...

 }

 buildTypes {

 ...

 }

}

...

The above assumes that support for earlier Android operating system versions and processor

architectures isn’t required in the application. If support is required, also follow the instructions in

the [Appendix: Early Version Support].

4. App targeting API level 31 or above, override getEventHandler() in App’s Application class to

return WS1AnchorEvents object.

 public class AppApplication extends AWApplication {

 @NonNull

 @Override

 public WS1AnchorEvents getEventHandler() {

 return new AppWS1AnchorEvents();

 }

 }

This completes the required changes to the build configuration. Build the application to confirm

that no mistakes have been made. After that, continue with the next task, which is to Initialize the

Workspace ONE Integration Guide for Android

Base Integration Guide Page 16 of 27

Framework.

In case you encounter an error, check the [Early Version Support Build Error] first.

Workspace ONE Integration Guide for Android

Base Integration Guide Page 17 of 27

Task: Initialize Framework
Framework initialization is a Workspace ONE platform integration task for Android application

developers. It applies to Framework-level integration, not to Client-level integration.

The Framework initialization task is dependent on the Add the Framework task. The following

instructions assume that the dependent task is complete already.

Select initialization class
Framework initialization can start from either an Android Application subclass, referred to as

initialization by delegation, or from a Workspace ONE SDK AWApplication subclass, referred to as

initialization by extension. Choose the better option for your application, as follows.

If your application has an Android Application subclass, then choose it as the Framework

initialization class. Proceed to these instructions:

Initialize by delegation from an Android application subclass.

Otherwise, create a Workspace ONE SDK AWApplication subclass and it will be the Framework

initialization class. Proceed to these instructions:

Create an initialization subclass by extension.

Workspace ONE Integration Guide for Android

Base Integration Guide Page 18 of 27

Initialize by delegation from an Android Application subclass
Follow these instructions to initialize from an Android Application subclass. This is an alternative to

creating an AWApplication subclass. See Select initialization class for a discussion of the

alternatives.

Update your Android Application subclass as follows.

Declare that the class implements the AWSDKApplication interface.

Add an AWSDKApplicationDelegate instance as a property.

Move the code from the body of your onCreate method, if any, to an override of the

AWSDKApplication onPostCreate method.

Override the AWSDKApplication getMainActivityIntent() method to return an Intent for the

application’s main Activity.

Override the following Android Application methods:

onCreate

getSystemService

attachBaseContext

The required overrides are shown in the code snippets below, in Kotlin and in Java.

Implement all the other AWSDKApplication methods by calling the same method in the

AWSDKApplicationDelegate instance.

Kotlin delegation-by can be used for the implementation. This is illustrated in the Initialization by

delegation in Kotlin code snippet below.

-

-

-

Workspace ONE Integration Guide for Android

Base Integration Guide Page 19 of 27

Initialization by delegation in Java
In Java, the class could look like this:

public class Application extends android.app.Application implements AWSDKApplication {

 // SDK Delegate.

 private final AWSDKApplicationDelegate awDelegate = new AWSDKApplicationDelegate();

 @NotNull

 @Override

 public AWSDKApplication getDelegate() { return awDelegate; }

 // Android Application overrides for integration.

 @Override

 public void onCreate() {

 super.onCreate();

 this.onCreate(this);

 }

 @Override

 public Object getSystemService(String name) {

 return this.getAWSystemService(name, super.getSystemService(name));

 }

 @Override

 public void attachBaseContext(@NotNull Context base) {

 super.attachBaseContext(base);

 attachBaseContext(this);

 }

 // Application-specific overrides.

 @Override

 public void onPostCreate() {

 // Code from the application's original onCreate() would go here.

 }

 @NonNull

 @Override

 public Intent getMainActivityIntent() {

 // Replace MainActivity with application's original main activity.

 return new Intent(getApplicationContext(), MainActivity.class);

 }

 // Mechanistic AWSDKApplication abstract method overrides.

 // Methods that return a value could follow this as a template:

 @Nullable

 @Override

 public Object getAWSystemService(@NotNull String name, @Nullable Object systemService) {

 return awDelegate.getAWSystemService(name, systemService);

 }

 // Methods that return void could follow this as a template:

 @Override

 public void attachBaseContext(@NotNull android.app.Application application) {

 awDelegate.attachBaseContext(application);

 }

 // ... Many more overrides here.

}

Workspace ONE Integration Guide for Android

Base Integration Guide Page 20 of 27

Initialization by delegation in Kotlin
In Kotlin, the class could look like this:

// This class uses Kotlin delegation to implement the AWSDKApplication

// interface.

// A new AWSDKApplicationDelegate instance is allocated on the fly as the

// delegate. For background on Kotlin delegation, see:

// https://kotlinlang.org/docs/reference/delegation.html

open class Application:

 android.app.Application(),

 AWSDKApplication by AWSDKApplicationDelegate()

{

 // Android Application overrides for integration.

 override fun onCreate() {

 super.onCreate()

 onCreate(this)

 }

 override fun getSystemService(name: String): Any? {

 return getAWSystemService(name, super.getSystemService(name))

 }

 override fun attachBaseContext(base: Context?) {

 super.attachBaseContext(base)

 attachBaseContext(this)

 }

 // Application-specific overrides.

 override fun onPostCreate() {

 // Code from the application's original onCreate() would go here.

 }

 override fun getMainActivityIntent(): Intent {

 // Replace MainActivity with application's original main activity.

 return Intent(applicationContext, MainActivity::class.java)

 }

}

Next
This completes initialization from an Android Application subclass. Now continue with the next step,

which is to configure the initialization class in the manifest.

Workspace ONE Integration Guide for Android

Base Integration Guide Page 21 of 27

Create an initialization subclass by extension
Follow these instructions to create a Framework initialization AWApplication subclass. This is an

alternative to initialising from an Android Application subclass. See Select initialization class for a

discussion of the alternatives.

Add to your application code a new class that:

Is declared as an AWApplication subclass.

Overrides the getMainActivityIntent() method to return an Intent for the application’s main
Activity.

Implements the other required methods with dummies.

In Java, the class could look like this:

// Note the fully qualified class name in the extends declaration.

public class AWApplication extends com.airwatch.app.AWApplication {

 @NotNull

 @Override

 public Intent getMainActivityIntent() {

 return new Intent(getApplicationContext(), MainActivity.class);

 }

 @Override

 public void onSSLPinningRequestFailure(

 @NotNull String host, X509Certificate x509Certificate

) {

 }

 @Override

 public void onSSLPinningValidationFailure(

 @NotNull String host, X509Certificate x509Certificate

) {

 }

}

In Kotlin, the class could look like this:

// Note the fully qualified base class name.

open class AWApplication: com.airwatch.app.AWApplication() {

 override fun getMainActivityIntent(): Intent {

 return Intent(applicationContext, MainActivity::class.java)

 }

 override fun onSSLPinningRequestFailure(

 host: String,

 serverCACert: X509Certificate?

) {

 }

 override fun onSSLPinningValidationFailure(

 host: String,

 serverCACert: X509Certificate?

) {

 }

}

This completes the creation of an initialization subclass. Now continue with the next step, which is

to configure the initialization class in the manifest.

Configure the initialization class in the manifest
Follow these instructions to configure your selected initialization class in the Android manifest. The

initialization class will be either the existing Android Application subclass, or a new AWApplication

subclass that was just created. See Select initialization class for a discussion of the alternatives.

Workspace ONE Integration Guide for Android

Base Integration Guide Page 22 of 27

Proceed as follows.

1. Add the Android schema tools.

The tools can be added at the top of the file, in the manifest tag, for example like this:

<manifest

 xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.integrationguide"

 xmlns:tools="http://schemas.android.com/tools"

 >

2. Update the application declaration.

The application declaration must be updated to:

Declare an application class name, if it wasn’t already declared.

Replace the label.

Override the allowBackup flag with the setting from the SDK manifest.

These updates can be made in the application tag, for example like this:

<application

 android:name=".YourApplicationOrAWApplicationSubClass"

 android:label="@string/app_name"

 ...

 tools:replace="android:label, android:allowBackup, android:networkSecurityConfig"

 >

3. Set the launcher and main Activity to be from the Framework.

If the application had a previous declaration for launcher and main Activity, remove it. Instead,

declare the Framework SDKSplashActivity as launcher and main.

New declarations could look like this, for example:

<activity

 android:name=".MainActivity"

 >

 <!-- Original launcher and main declarations removed. -->

</activity>

<activity

 android:name="com.airwatch.login.ui.activity.SDKSplashActivity"

 android:label="@string/app_name"

 >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

</activity>

4. From SDK 23.04 onwards, application need not add implementation for

AirWatchSDKBaseIntentService, and must be removed while upgrading SDK.

5. Declare the required permission.

If your app targets Android 13 or higher, then in order to see notifications declare the below

permission in your app’s manifest file if not present already. developer.android.com/…13/…

#notification-permission

 <uses-permission android:name="android.permission.POST_NOTIFICATIONS"/>

This completes the initialization class configuration.

Request the required Permissions

-

-

-

Workspace ONE Integration Guide for Android

Base Integration Guide Page 23 of 27

https://developer.android.com/about/versions/13/behavior-changes-all#notification-permission
https://developer.android.com/about/versions/13/behavior-changes-all#notification-permission

If your app targets Android 13 or higher, request the new notification permission from your app’s

MainActivity if not requested already. developer.android.com/…13/…#notification-permission

Below is the code snippet, for example:

 private void setupPermissions() {

 if(Build.VERSION.SDK_INT >= Build.VERSION_CODES.TIRAMISU) {

 int permission = ContextCompat.checkSelfPermission(

 this,

 Manifest.permission.POST_NOTIFICATIONS

);

 if (permission != PackageManager.PERMISSION_GRANTED) {

 ActivityCompat.requestPermissions(

 this,

 new String[]{Manifest.permission.POST_NOTIFICATIONS},

 NOTIFICATION_REQ_CODE

);

 }

 }

 }

 @Override

 public void onRequestPermissionsResult(int requestCode, @NonNull String[] permissions, @NonNull int[] grantResults) {

 super.onRequestPermissionsResult(requestCode, permissions, grantResults);

 if (requestCode == NOTIFICATION_REQ_CODE){

 if (grantResults.length == 0 || grantResults[0] != PackageManager.PERMISSION_GRANTED) {

 toastHere("Notification Permission has been denied by user");

 } else {

 toastHere("Notification Permission has been granted by user");

 }

 }

 }

This completes requesting the required permissions.

Next Steps
Build and run the application to confirm that no mistakes have been made.

The Workspace ONE splash screen should be shown at launch, Other SDK screens might also be

shown depending on the configuration in the management console. See the Appendix: User

Interface Screen Capture Images.

After completing the above, you can proceed to:

Networking integration.

Branding integration.

Integration of other framework features.

See the respective documents in the Workspace ONE Integration Guide for Android set. An

overview that includes links to all the guides in the set is available

in Markdown format, in the repository that also holds the sample code:

Omnissahttps://github.com/euc-releases/…IntegrationOverview.md

in Portable Document Format (PDF), on the Omnissa website:

https://developer.omnissa.com/…IntegrationOverview.pdf

Workspace ONE Integration Guide for Android

Base Integration Guide Page 24 of 27

https://developer.android.com/about/versions/13/behavior-changes-all#notification-permission
https://github.com/euc-releases/workspace-ONE-SDK-integration-samples/blob/main/IntegrationGuideForAndroid/Guides/01Overview/WorkspaceONE_Android_IntegrationOverview.md
https://developer.omnissa.com/docs/12354/WorkspaceONE_Android_IntegrationOverview.pdf

Screen capture 1: Splash screen Screen capture 2: Login screen

Appendix: User Interface Screen Capture Images
The following images show screens that are part of the Workspace ONE SDK user interface.

The splash screen should be shown during every launch of an application that is integrated to the

Framework level. The login screen might be shown afterwards, depending on the application state

and the configuration in the management console.

Workspace ONE Integration Guide for Android

Base Integration Guide Page 25 of 27

Appendix: Troubleshooting

Kotlin Compatibility
Occasionally, one may encounter an exception containing the message “Class ‘kotlin.Unit’ was

compiled with an incompatible version of Kotlin. The binary version of its metadata is 1.. version,

expected version is 1.8.21.” during compilation. This exception is due to incompatible versions of

your app with the Workspace One SDK. As of Release 23.09, all apps consuming WS1 will be

required to use Kotlin v1.8.21 or higher.

Empty Response from AirWatch MDM Service
Occasionally, one may encounter the message “Empty Response from Airwatch MDM Service” in

the adb log during app integration into Workspace ONE. This error message is triggered when the

app was not installed via Intelligent Hub.

To resolve this error, it is recommended to upload the APK to the UEM once, then install the app

through Intelligent Hub.

For detailed instructions please refer to the Integration Preperation Guide, specifically

Appendix: How to upload an Android application to the management console

as Markdown: Preperation Guide - Appendix: How to upload an Android application to the
management console

as PDF: Preperation Guide - Appendix: How to upload an Android application to the
management console

and

Task: Install application via Workspace ONE

as Markdown: Preparation Guide - Task: Install application via Workspace ONE

as PDF: Preparation Guide - Task: Install application via Workspace ONE

Once the APK has been uploaded to the UEM and installed via Workspace ONE, the app can then

be subsequently side-loaded by the ABD provided the side load is signed by the same developer

key as the original upload. To ensure your APK is signed on every build please refer to the

Preperation Guide, specifically

Appendix: How to generate a signed Android package every build

as Markdown Preparation Guide - How to generate a signed Android package every build

as PDF: Preparation Guide - How to generate a signed Android package every build

Workspace ONE Integration Guide for Android

Base Integration Guide Page 26 of 27

https://github.com/euc-releases/workspace-ONE-SDK-integration-samples/blob/main/IntegrationGuideForAndroid/Guides/02Preparation/WorkspaceONE_Android_IntegrationPreparation.md#appendix-how-to-upload-an-android-application-to-the-management-console-how-to-upload-an-android-application-to-the-management-console
https://github.com/euc-releases/workspace-ONE-SDK-integration-samples/blob/main/IntegrationGuideForAndroid/Guides/02Preparation/WorkspaceONE_Android_IntegrationPreparation.md#appendix-how-to-upload-an-android-application-to-the-management-console-how-to-upload-an-android-application-to-the-management-console
https://vdc-download.omnissa.com/vmwb-repository/dcr-public/5c29b39f-3090-49aa-8fa6-1fd0d9fd0020/a5fe6014-4fe6-4ac7-9290-c67343d1f27d/WorkspaceONE_Android_IntegrationPreparation.pdf#page=15
https://vdc-download.omnissa.com/vmwb-repository/dcr-public/5c29b39f-3090-49aa-8fa6-1fd0d9fd0020/a5fe6014-4fe6-4ac7-9290-c67343d1f27d/WorkspaceONE_Android_IntegrationPreparation.pdf#page=15
https://github.com/euc-releases/workspace-ONE-SDK-integration-samples/blob/main/IntegrationGuideForAndroid/Guides/02Preparation/WorkspaceONE_Android_IntegrationPreparation.md#task-install-application-via-workspace-one-install-your-application-via-workspace-one
https://vdc-download.omnissa.com/vmwb-repository/dcr-public/5c29b39f-3090-49aa-8fa6-1fd0d9fd0020/a5fe6014-4fe6-4ac7-9290-c67343d1f27d/WorkspaceONE_Android_IntegrationPreparation.pdf#page=5
https://github.com/euc-releases/workspace-ONE-SDK-integration-samples/blob/main/IntegrationGuideForAndroid/Guides/02Preparation/WorkspaceONE_Android_IntegrationPreparation.md#appendix-how-to-generate-a-signed-android-package-every-build-how-to-generate-a-signed-android-package-every-build
https://vdc-download.omnissa.com/vmwb-repository/dcr-public/5c29b39f-3090-49aa-8fa6-1fd0d9fd0020/a5fe6014-4fe6-4ac7-9290-c67343d1f27d/WorkspaceONE_Android_IntegrationPreparation.pdf#page=13

Document Information

Published Locations
This document is available

in Markdown format, in the repository that also holds the sample code:

Omnissahttps://github.com/euc-releases/…BaseIntegration.md

in Portable Document Format (PDF), on the Omnissa website:

https://developer.omnissa.com/…BaseIntegration.pdf

Revision History
03jul2020 First publication, for 20.4 SDK for Android.

31jul2020 to 09dec2021 Updated for 20.7 to 21.11 SDK for Android releases.

26Jan2022 Update for 22.1 SDK for Android.

28Feb2022 Update for 22.2 SDK for Android.

04Apr2022 Updated for 22.3 SDK for Android.

29Apr2022 Updated for 22.4 SDK for Android.

06Jun2022 Updated for 22.5 SDK for Android.

05Jul2022 Updated for 22.6 SDK for Android.

23Aug2022 Updated for 22.8 SDK for Android.

04Nov2022 Updated for 22.10 SDK for Android.

13Dec2022 Updated for 22.11 SDK for Android.

25Jan2023 Updated for 23.01 SDK for Android.

15Mar2023 Updated for 23.03 SDK for Android.

27Apr2023 Updated for 23.04 SDK for Android.

06Jun2023 Updated for 23.06 SDK for Android.

24Jul2023 Updated for 23.07 SDK for Android.

07Sep2023 Updated for 23.09 SDK for Android.

25Oct2023 Updated for 23.10 SDK for Android.

18Dec2023 Updated for 23.12 SDK for Android.

25Jan2024 Updated for 24.01 SDK for Android.

15May2024 Updated for 24.04 SDK for Android.

05Jul2024 Updated for 24.06 SDK for Android.

28Aug2024 Updated for 24.07 SDK for Android.

29Oct2024 Updated for 24.10 SDK for Android.

10Dec2024 Updated for 24.11 SDK for Android.

Workspace ONE Integration Guide for Android

Base Integration Guide Page 27 of 27

https://github.com/euc-releases/workspace-ONE-SDK-integration-samples/blob/main/IntegrationGuideForAndroid/Guides/03BaseIntegration/WorkspaceONE_Android_BaseIntegration.md
https://developer.omnissa.com/docs/12356/WorkspaceONE_Android_BaseIntegration.pdf

