
Branding Integration Guide

Workspace ONE for Android
Android applications can be integrated with the Omnissa Workspace ONE®
platform, by using its mobile software development kit. Complete the tasks below

to utilize the branding features of the platform.

This document is part of the Workspace ONE Integration Guide for Android set.

Table of Contents
Introduction..2

Use Cases..5

Branding Feature Compatibility..7

Integration Paths Diagram..9

Task: Implement Static Application Branding...10

Task: Set a Notification Icon...14

Task: Configure Dark Mode Selection...16

Task: Support Enterprise Branding..18

Task: Implement Dynamic Branding...20

Task: Configure Android 12 Splashscreen...29

Appendix: How to configure enterprise branding in the management console.......30

Appendix: Branding elements on the splash screen...32

Appendix: Branding elements on the login screen..33

Appendix: Notification Icon..34

Appendix: How to reset application state..35

Appendix: How to add a color resource to an Android application..............................36

Document Information...37

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 1 of 37

Introduction
The Workspace ONE platform supports the following types of branding.

Static application branding.

Enterprise branding.

Dynamic branding.

For a quick overview of the elements that can be branded in the Workspace ONE

user interface, see the Splash Screen and Login Screen images in the appendix to

this document. The images are annotated to show brand elements in the SDK

user interface.

This guide also covers the following independent branding options.

Dark mode configuration.

Notification icon.

Branding is implemented by the following platform components:

Workspace ONE Unified Endpoint Manager (UEM) console.

Workspace ONE mobile Software Development Kit (SDK).

Integration Tasks
The tasks detailed below will integrate your Android application with the branding

support of the Workspace ONE platform. The tasks you will complete depend on

which branding features are required.

Static application branding.

Branding colors and images to be applied by the SDK can be configured in the

application code. This is static application branding. Static application branding

is built on the Android resources system.

To add static application branding to your application, follow the Implement

Static Application Branding instructions.

Enterprise branding support.

Branding colors and images for mobile applications can be configured in the

UEM. This is enterprise branding. The enterprise branding configuration from the

UEM gets applied by the SDK to its own user interface elements, such as the

splash screen and the login screen.

Adding support for enterprise branding to an application is only a small amount

of work for the developer, see Support Enterprise Branding.

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 2 of 37

Dynamic Branding.

Branding colors and images to be applied by the SDK can be provided at run

time by the application code. This is dynamic branding. Dynamic branding

requires implementation of a branding manager interface in the application

code.

Dynamic branding offers the most flexibility to the application developer. To

add dynamic branding to your application, follow the Implement Dynamic

Branding instructions.

Dark mode configuration.

The SDK user interface supports Android dark mode. The SDK will select dark

mode according to configuration from the application code.

This is an independent branding option, separate to the other branding

features. To use this option, follow the Configure Dark Mode Selection

instructions.

Notification icon.

The application code can provide a small icon for the SDK to apply to

notifications that it posts, for example in the device status bar.

This is an independent branding option, separate to the other branding

features. To use this option, follow the Set a Notification Icon instructions.

Some requirements analysis, leading to suggestions for which features to

integrate in your application, may be found under Use Cases. Compatibility of

these features with each other is discussed under Branding Feature Compatibility.

Screen capture images, annotated to show the elements that can be branded in

the Workspace ONE user interface, can be found in the Splash Screen and Login

Screen images in the appendix to this document.

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 3 of 37

Integration Guides
This document is part of the Workspace ONE Integration Guide for Android set.

See other guides in the set for

an introduction to SDK integration in general.

details of the base integration tasks for the Framework integration level, which
must be done before the tasks in this document.

An overview that includes links to all the guides is available

in Markdown format, in the repository that also holds the sample code:

Omnissahttps://github.com/euc-releases/…IntegrationOverview.md

in Portable Document Format (PDF), on the Omnissa website:

https://developer.omnissa.com/…IntegrationOverview.pdf

Compatibility
Instructions in this document have been tested with the following software

versions.

Software Version

Workspace ONE SDK for Android 24.11

Workspace ONE management console 2306

Android Studio integrated development environment 2022.3.1

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 4 of 37

https://github.com/euc-releases/workspace-ONE-SDK-integration-samples/blob/main/IntegrationGuideForAndroid/Guides/01Overview/WorkspaceONE_Android_IntegrationOverview.md
https://developer.omnissa.com/docs/12354/WorkspaceONE_Android_IntegrationOverview.pdf

Use Cases
The following use cases can be read as a starting point for requirements analysis

of branding.

Use Case: Customer Application
In some cases, a mobile application will be developed by a team at the same

enterprise as its end users, and integrated with Workspace ONE. This type of

application is referred to here as a customer application.

The following questions can be discussed to help establish the branding

requirements for a customer application.

What brand images should be shown in the SDK user interface when it appears

in the application?

The answer could be one of the following, for example.

No required images.

The application’s own images, if the application has a brand.

The corporate logo, or other enterprise brand images.

Image requirement is more complicated than any of the above.

Are application branding resources configured in the management console?

See the instructions for how to configure enterprise branding in the appendix to

this document in case you need to check.

If resources are configured, do they reflect the desired brand for the application

user interface?

If there are no required images, then the default SDK branding can be left in place.

There is no need to implement static, enterprise, nor dynamic branding.

If the required images are from the enterprise’s corporate brand, and they are

configured in the console, then the suggested integration is to Support Enterprise

Branding. This will be the least amount of work and maintenance for the

application development team.

If the required images are from the application’s brand, then the suggested

integration is to Implement Static Application Branding. That is also the suggested

integration if the required images are from the enterprise’s corporate brand, but

they aren’t configured in the console.

If the image requirement is more complicated, then the suggested integration is to

Implement Dynamic Branding.

i i

-

-

-

-

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 5 of 37

Use Case: Branded Partner Application
In some cases, a mobile application will be developed by an Independent

Software Vendor (ISV) or other third party, and integrated with the Workspace

ONE SDK for use at more than one customer enterprise. This type of application is

referred to here as a partner application.

The typical partner application has its own brand, for example a logo that appears

on the device home screen, app store, and elsewhere. The default integration

would be to Implement Static Application Branding. You will need to obtain or

create image files and other resources that reflect the application brand.

Use Case: Branded Partner Application with Optional
Override
In some cases a branded partner application, as described above, is required to

support overriding of its branding by some customer enterprises that deploy the

application.

For example, some customers might want to have their corporate logo shown

instead of the application brand. Showing the corporate logo to end users might

be felt to reinforce the association of the application with their employer.

This option can be supported by doing both integrations: Implement Static

Application Branding and Support Enterprise Branding.

Customers that want the override would configure their required logo as an

application branding resource in their UEM console. See the instructions for how

to configure enterprise branding in the appendix for the location of the

configuration in the console.

Other Use Cases: Complex Branding Requirements
Some branding requirements are more complex than those covered by the above

use cases. Some examples are:

Generate brand images at run time.

Change brand images without re-enrolment and without app upgrade on the
device.

Retrieve resources from the management console after enrolment has started
but before completion, like the Workspace ONE Intelligent Hub.

In these cases, the suggested integration is to Implement Dynamic Branding.

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 6 of 37

Branding Feature Compatibility
The branding features are compatible with each other as follows.

Static application branding and enterprise branding
Your application can have both its own static branding resources, and support

enterprise branding as an override. In that case, the SDK will apply one or other

branding, as follows.

When the application starts for the first time after installation, the SDK will apply

the static application branding.

When the UEM server has been contacted by the SDK and at least the

organizational group has been specified, the SDK will check whether enterprise

branding has been configured.

If enterprise branding isn’t configured, then the SDK will continue to apply the

static application branding.

Otherwise, the SDK will retrieve the enterprise branding resources and apply

them going forwards.

The enterprise branding can be partial, omitting some configurable images or

colors. The SDK will apply static application branding resources where a UEM

resource is omitted.

It can occur that enterprise branding resources are fetched and applied in the

early stages of registration, but the end user then cancels, or registration isn’t

finalized for some other reason. In that case, enterprise branding will be applied

next time the application starts.

Dynamic branding and other types of branding
A dynamic branding implementation can, at run time:

Access static application resources.

Access enterprise branding resources that have been retrieved from the UEM.

Fetch custom branding resources from a server associated with the application.

Generate branding resources programmatically.

The SDK will apply any or all of the above types of branding resources as directed

by the dynamic branding implementation.

Dynamic branding can be compatible with static branding and with enterprise

branding, depending on how it is implemented.

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 7 of 37

Independent branding options
The independent branding option implementations are compatible with static

branding, enterprise branding, and dynamic branding.

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 8 of 37

Integration Paths Diagram
The following diagram shows the tasks and options for integrating each of the

branding features. Framework base integration is a prerequisite to branding

integration.

Independent Branding Options

Implement
Dynamic
Branding

Static application branding only

Start

Dynamic branding

Implement Static
Application
Branding

Support
Enterprise
Branding

Enterprise branding only

Enterprise branding and static application branding,
enterprise having priority

Framework base
integration

Set a
Notification Icon

Configure Dark
Mode Selection

Diagram 1: Branding Feature Integration Paths

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 9 of 37

Task: Implement Static Application Branding
Implementing static application branding is an optional Workspace ONE platform

integration task for Android application developers.

Static application branding is configured in the application code, using Android

resources. The configuration can include colors and images. If your application has

static branding resources, the SDK will render the configured colors and images in

its own user interface elements.

Add brand resources to the project
First, add brand resources for colors and images to your Android Studio project. If

you don’t have final brand resources, you can create placeholders using the tools

that come with Android Studio.

You can create simple image resources with the Image Asset Studio.

Instructions can be found here:

https://developer.android.com/studio/write/image-asset-studio#access

The instructions in either of the following sections will help you create a suitable

placeholder image.

Create adaptive and legacy launcher icons.

Create a notification icon.

Save your image either in res/drawable, or in res/mipmap for example.

You can configure color values in Android Studio.

Instructions for how to add a color resource to an Android application can be

found in the appendix to this document, if needed.

After adding your brand resources, you can move on to the next step.

-

-

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 10 of 37

https://developer.android.com/studio/write/image-asset-studio#access

Static style configuration
Add references to your brand resources to the application styles configuration.

The styles configuration can be opened as follows.

1. Open your project in Android Studio.

2. Under the application module, expand res, values, and then open the
styles.xml file.

This snippet illustrates the configuration:
<resources xmlns:tools="http://schemas.android.com/tools">

 <style tools:override="true" name="SDKBaseTheme" parent="SDKVisionBaseTheme">

 <item name="awsdkSplashBrandingIcon">@mipmap/ic_splash</item>

 <item name="awsdkLoginBrandingIcon">@mipmap/ic_login</item>

 <item name="awsdkApplicationColorPrimary">@color/appLine</item>

 </style>

 <!-- Other style definitions here. -->

</resources>

Note the following:

The Android schema tools have been added, in the resources tag. The tools

enable override declarations in the rest of the configuration, to suppress

warnings.

The style tag with name “SDKBaseTheme” holds the items the are relevant to

the SDK. The parent attribute must be set to “SDKVisionBaseTheme”.

See also the Splash Screen and Login Screen images in the appendix to this

document. The images are annotated to show brand elements in the SDK user

interface.

Static style configuration item tags
Item tags within the base theme with the following names are relevant to the SDK.

awsdkSplashBrandingIcon

Sets the image on the SDK splash screen, ic_splash in the mipmap resources in

the above snippet.

awsdkLoginBrandingIcon

Sets the image on the SDK login screen, ic_login in the mipmap resources in the

above snippet.

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 11 of 37

awsdkApplicationColorPrimary

Sets the color for certain user interface elements, for example:

The progress bar on the splash screen.

The background of the Next and Confirm navigations on the login screen.

In the above snippet, the color is set to the value of the color resource appLine.

That value could be defined in the colors.xml file, for example.

This color will be overridden by the enterprise branding configuration, if specified.

Next steps
This completes static application branding implementation. Build and run the

application to confirm that your brand is displayed.

Note that your application branding mightn’t be applied to all screens in the

enrolment and unlock interactions. This is true of screens whose Activity code is in

the Hub application, such as the Single Sign-On login screen for example.

Consider whether to support branding override by the enterprise.

-

-

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 12 of 37

Enterprise Branding Considerations
Enterprise branding can override static application branding. This depends on the

following factors.

If the application doesn’t support enterprise branding, then its static branding

won’t be overridden.

If enterprise branding hasn’t been configured in the UEM with which an

application instance is enrolled, then static branding won’t be overridden.

Enterprise branding configurations can be changed by UEM administrators at any

time. Changes are retrieved and applied by the SDK at run time, without the need

for an application upgrade.

If your application branding shouldn’t be overridden:

Don’t add support for enterprise branding.

If support has already been added, then remove it. See Support Enterprise

Branding for the code changes. In those instructions, either set the support flag

to false instead of true, or you can remove the override because false is the

default.

Advise the appropriate system administrators, depending on your application

type.

For a Customer Application, this could be your own IT department or helpdesk.

For other application types, this would be all the customer enterprises that

deploy the application.

Application types are introduced in the Use Cases requirements analysis

discussion.

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 13 of 37

Task: Set a Notification Icon
Setting a notification icon is an optional Workspace ONE platform integration task

for Android application developers.

Notification icon setting is implemented in the application code, using Android

resources and a method override. If an icon is set, the SDK will apply it as the

small icon to notifications that it posts, for example in the device status bar. The

SDK posts a notification when, for example, authentication is required.

If the application doesn’t set a notification icon, the SDK applies a built-in

Workspace ONE brand icon.

See also the Notification Icon Screen Capture in the appendix.

Add notification icon resource
First, add a suitable resource for a notification icon to your Android Studio project.

If you don’t have final brand resources, you can create placeholders using the

tools that come with Android Studio.

If you are unfamiliar with Android notification icon requirements, these tips might

help.

Use a simple, single-color graphic, on a transparent background, as your

notification icon.

A typical representation is a small portable network graphics (PNG) format file.

The file could be in the project’s resources, in the res drawable directory, for

example.

See the Android developer website for official guidance on notification design.

Register notification resource
Register the notification icon resource, as follows.

Identify the class in which to register the icon, depending on framework

initialization mechanism:

The Android Application subclass, if initialized by extension.

The AWApplication subclass, if initialized by delegation.

Either subclass could have been created as part of the Initialize Framework task

in the Base Integration guide. See that guide for a discussion of the extension

and delegation mechanisms.

Override getNotificationIcon to be a method that returns the resource

identifier of the icon graphic.

-

-

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 14 of 37

See the following code snippets for examples. Note that the same code applies to

the extension and delegation mechanisms.

In Java, the override method could look like this:
@Override

public int getNotificationIcon() { return R.drawable.brand_logo_onecolour; }

In Kotlin, the override method could look like this:

override fun getNotificationIcon(): Int { return R.drawable.brand_logo_onecolour }

Next Steps
This completes notification icon implementation.

Test the changes by causing the SDK to post a notification. How to do this

depends on the UEM configuration. In some deployments, power cycling the

mobile device will trigger a notification that the application requires

authentication.

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 15 of 37

Task: Configure Dark Mode Selection
Configuring Android dark mode selection by the SDK is an optional Workspace

ONE platform integration task for Android application developers. Dark mode is

sometimes referred to as night mode.

The SDK user interface supports dark mode. Depending on the application

configuration and device settings, the SDK may select to display its user interface

in dark mode. Dark mode selection configuration is implemented in the application

code, by a method override.

By default, if the application doesn’t configure dark mode selection, the SDK user

interface won’t be displayed in dark mode.

For details of dark mode, see this page on the Android developer website:

https://developer.android.com/guide/topics/ui/look-and-feel/darktheme

Determine required dark mode selection
First, determine what dark mode selection is required by your application.

Your application might support device dark mode selection, for example by

applying one of the Android application compatibility DayNight themes to its user

interface. In that case, the requirement would be to follow the system selection.

For other selections, see the Android developer website page mentioned above.

Override dark mode selection method
Override the dark mode selection method, as follows.

Identify the class in which to configure dark mode selection by the SDK,

depending on framework initialization mechanism:

The Android Application subclass, if initialized by extension.

The AWApplication subclass, if initialized by delegation.

Either subclass could have been created as part of the Initialize Framework task

in the Base Integration guide. See that guide for a discussion of the extension

and delegation mechanisms.

Override getNightMode to be a method that returns the dark mode selection

to be made by the SDK. The SDK supports the MODE_NIGHT_ values

documented on the Android developer website.

See the following code snippets for examples. Note that the same code applies to

the extension and delegation mechanisms.

-

-

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 16 of 37

https://developer.android.com/guide/topics/ui/look-and-feel/darktheme

In Java, the override method could look like this:
@Override

public int getNightMode() { return AppCompatDelegate.MODE_NIGHT_FOLLOW_SYSTEM; }

In Kotlin, the override method could look like this:

override fun getNightMode(): Int { return AppCompatDelegate.MODE_NIGHT_FOLLOW_SYSTEM }

Next Steps
This completes dark mode selection configuration.

Test the changes by making different dark mode selections in the device settings

and checking that the SDK user interface display is as required.

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 17 of 37

Task: Support Enterprise Branding
Supporting enterprise branding is an optional Workspace ONE platform

integration task for Android application developers.

Enterprise branding is configured in the management console. The configuration

can include colors and images. Instructions for how to configure enterprise

branding can be found in the appendix to this document, if needed.

If your application supports enterprise branding, the SDK will render the

configured colors and images in its own user interface elements.

Set the enterprise branding support flag
You support enterprise branding by setting a flag that the SDK reads. Proceed as

follows.

Identify the class in which to set the flag, depending on framework initialization

mechanism:

The Android Application subclass, if initialized by extension.

The AWApplication subclass, if initialized by delegation.

Either subclass could have been created as part of the Initialize Framework task

in the Base Integration guide. See that guide for a discussion of the extension

and delegation mechanisms.

Override isInputLogoBrandable to be a method that always returns true.

See the following code snippets for examples. Note that the same code applies to

the extension and delegation mechanisms.

In Java, the override method could look like this:
@Override

public boolean isInputLogoBrandable() { return true; }

In Kotlin, the override method could look like this:

override fun isInputLogoBrandable(): Boolean { return true }

Next steps
This completes support for enterprise branding.

Test the changes by installing the application on a device and enrolling with a

UEM that has enterprise branding configured.

See the appendix to this document for:

Instructions for how to configure enterprise branding, if needed.

-

-

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 18 of 37

Annotated Splash Screen and Login Screen images that show where
configurable elements appear in the SDK user interface.

Instructions for how to reset application state, which could be used to force the
SDK to replay some interactions in which brand resources appear.

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 19 of 37

Task: Implement Dynamic Branding
Implementing dynamic branding is an optional Workspace ONE platform

integration task for Android application developers.

Dynamic branding is implemented as a programming interface from the

application code. The SDK will call methods in the programming interface as

needed to apply branding to its user interface. The dynamic branding

programming interface can be written in Java or Kotlin.

To implement dynamic branding, you create an object that implements the

BrandingManager interface, and then register it with the SDK. Your

implementation can, depending on your branding requirements, make use of

enterprise branding resources from the UEM.

Follow these instructions to create a skeleton dynamic branding manager that can

be the starting point for your own implementation.

Create a branding manager object with access to
enterprise branding
Add a class to your application that:

Declares that it implements the interface:

com.airwatch.login.branding.BrandingManager

Delegates implementation of all methods in the interface to a property of type:

com.airwatch.login.branding.DefaultBrandingManager

The DefaultBrandingManager constructor isn’t documented here but examples

of its instantiation are given below.

Facilitates creation of an instance of the required property.

Is a singleton class.

See the following code snippets for examples.

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 20 of 37

Java Branding Manager Class
In Java, the code could look like this:

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 21 of 37

class BrandingManager implements com.airwatch.login.branding.BrandingManager

{

 static DefaultBrandingManager createDefaultBrandingManager(

 android.app.Application application

) {

 return new DefaultBrandingManager(

 SDKContextManager.getSDKContext().getSDKConfiguration(),

 new SDKDataModelImpl(application.getApplicationContext()),

 application.getApplicationContext(),

 true

);

 }

 private static BrandingManager instance = null;

 public static BrandingManager getInstance(android.app.Application application) {

 if (instance == null) {

 instance = new BrandingManager(createDefaultBrandingManager(application));

 }

 return instance;

 }

 public static BrandingManager getInstance(android.app.Activity activity) {

 return getInstance(activity.getApplication());

 }

 public static BrandingManager getInstance() { return instance; }

 private BrandingManager(DefaultBrandingManager defaultBrandingManager) {

 this.defaultBrandingManager = defaultBrandingManager;

 }

 private DefaultBrandingManager defaultBrandingManager;

 public DefaultBrandingManager getDefaultBrandingManager() {

 return this.defaultBrandingManager;

 }

 @Override

 public void applyBranding(android.app.Activity activity) {

 defaultBrandingManager.applyBranding(activity);

 }

 @Override

 public void applyBranding(AWInputField inputField) {

 defaultBrandingManager.applyBranding(inputField);

 }

 @Override

 public void brandLoadingScreenLogo(BrandingCallBack callback) {

 defaultBrandingManager.brandLoadingScreenLogo(callback);

 }

 @Override

 public void brandInputScreenLogo(BrandingCallBack callback) {

 defaultBrandingManager.brandInputScreenLogo((callback));

 }

 @Override

 public Integer getPrimaryColor() {

 return defaultBrandingManager.getPrimaryColor();

 }

 @Override

 public void applyBranding(AWNextActionView nextActionView) {

 defaultBrandingManager.applyBranding(nextActionView);

 }

}

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 22 of 37

Kotlin Branding Manager Class
In Kotlin, the code could look like this:
open class BrandingManager private constructor (

 val defaultBrandingManager: DefaultBrandingManager

) : com.airwatch.login.branding.BrandingManager by defaultBrandingManager

{

 companion object {

 // Helper function.

 fun createDefaultBrandingManager(

 application: android.app.Application

): DefaultBrandingManager

 {

 return DefaultBrandingManager(

 SDKContextManager.getSDKContext().sdkConfiguration,

 SDKDataModelImpl(application.applicationContext),

 application.applicationContext,

 true

)

 }

 // Singleton business.

 private var instance: BrandingManager? = null

 fun getInstance(application: android.app.Application):BrandingManager {

 return instance ?:

 BrandingManager(createDefaultBrandingManager(application)).also {

 instance = it

 }

 }

 fun getInstance(activity: android.app.Activity):BrandingManager {

 return getInstance(activity.application)

 }

 fun getInstance():BrandingManager? {

 return instance

 }

 }

}

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 23 of 37

Register the branding manager
Register your branding manager class from the previous instructions with the SDK

as follows.

Identify the class in which to register the branding manager, depending on

framework initialization mechanism:

Android Application subclass, if initialized by extension.

AWApplication subclass, if initialized by delegation.

Return the singleton instance of your branding manager from your override for

the method:

getBrandingManager()

(Note: The enterprise branding support flag is ignored if a branding manager is

registered. See Support Enterprise Branding for usage of the flag.)

See the following code snippets for examples. Note that the same code applies to

the extension and delegation mechanisms.

Java:
@NotNull

@Override

public com.airwatch.login.branding.BrandingManager getBrandingManager() {

 return BrandingManager.getInstance(this);

}

Kotlin:
override fun getBrandingManager(): com.airwatch.login.branding.BrandingManager {

 return BrandingManager.getInstance(this)

}

Build and run the application after making these changes to check that no

mistakes have been made.

-

-

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 24 of 37

Implement branding
You are now ready to implement your own dynamic branding. Override the

following methods in your BrandingManager implementation.

brandLoadingScreenLogo

Provides the image that the SDK will show on the splash screen.

Your method will receive as parameters a callback object and required

dimensions, width and height in pixels. The callback object will have an

onComplete method that you call to provide your Bitmap.

There is also a method with the same name that receives only the callback object.

The SDK will fall back to this method if your class doesn’t implement the first

method signature.

For example, as shown in these snippets.

Java code:
// Preferred, with dimensions.

@Override

public void brandLoadingScreenLogo(BrandingCallBack callBack, int width, int height) {

 callback.onComplete(yourBitmapReturningFunction(width, height));

}

// Fallback, without dimensions.

@Override

public void brandLoadingScreenLogo(BrandingCallBack callback) {

 callback.onComplete(yourBitmapReturningFunction());

}

Kotlin code:
// Preferred, with dimensions.

override fun brandLoadingScreenLogo(callback: BrandingCallBack?, width: Int, height: Int) {

 callback?.onComplete(yourBitmapReturningFunction(width, height))

}

// Fallback, without dimensions.

override fun brandLoadingScreenLogo(callback: BrandingCallBack?) {

 callback?.onComplete(yourBitmapReturningFunction())

}

brandInputScreenLogo

Provides the image that the SDK will show on the login screen. The image is

provided using the same callback mechanism as the previous method.

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 25 of 37

getPrimaryColor

Provides the color that the SDK will apply to certain user interface elements, for

example, the progress bar on the splash screen.

Return an Android Color value. For example, as shown in these snippets.

Java code:
@Override

public Integer getPrimaryColor() { return Color.RED; }

Kotlin code:

override fun getPrimaryColor(): Int? { return Color.RED }

applyBranding

For example, to set the background color of the Next and Confirm navigations on

the login screen.

Your method will receive as a parameter an object on which to call methods in

order to apply branding. You can first pass the object to the default branding

manager, to apply a default. For example, as shown in these snippets.

Java code:
@Override

public void applyBranding(AWNextActionView nextActionView) {

 // Apply default overall.

 defaultBrandingManager.applyBranding(nextActionView);

 // Apply a specific override.

 nextActionView.setBackgroundColor(Color.RED);

}

Kotlin code:
override fun applyBranding(nextActionView: AWNextActionView) {

 // Apply default overall.

 defaultBrandingManager.applyBranding(nextActionView)

 // Apply a specific override.

 nextActionView.setBackgroundColor(Color.RED)

}

This is an incomplete list but covers the main customizable brand resources.

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 26 of 37

Apply enterprise branding to the app user interface
Enterprise branding resources from the UEM can be applied to the user interface

of your application. (The preceding section deals with the opposite case,

customizing the SDK user interface.)

Access the image and color branding resources via an instance of:

DefaultBrandingManager

The code snippets under Java Branding Manager Class and Kotlin Branding

Manager Class show how DefaultBrandingManager can be instantiated.

DefaultBrandingManager implements the SDK BrandingManager interface and has

the same methods listed in the preceding section.

One use of UEM resources could be to show the splash screen logo in an Activity

in the application, for example. The following snippets illustrate how that could be

coded, in the onCreate method.

The UEM resources can contain multiple branding images, of different sizes.

DefaultBrandingManager will select the most suitable image resource based on

the display characteristics of the device. Also, if a width and height are specified

and the most suitable resource is too big, DefaultBrandingManager will scale it

down to fit within the specified dimensions and preserve aspect ratio.

Java:
// With specified width and height.

BrandingManager.getInstance(this).getDefaultBrandingManager().brandLoadingScreenLogo(bitmap -> {

 ((ImageView)findViewById(R.id.imageViewEnterpriseLogo)).setImageBitmap(bitmap);

}, width, height);

// Without specified width and height.

BrandingManager.getInstance(this).getDefaultBrandingManager().brandLoadingScreenLogo(bitmap -> {

 ((ImageView)findViewById(R.id.imageViewEnterpriseLogo)).setImageBitmap(bitmap);

});

Kotlin:
// With specified width and height.

 BrandingManager.getInstance(this).defaultBrandingManager.brandLoadingScreenLogo({

 findViewById<ImageView>(R.id.imageViewEnterpriseLogo).setImageBitmap(it)

 }, width, height)

// Without specified width and height.

BrandingManager.getInstance(this).defaultBrandingManager.brandLoadingScreenLogo {

 findViewById<ImageView>(R.id.imageViewEnterpriseLogo).setImageBitmap(it)

}

Another use of UEM resources could be to apply the primary color to some user

interface elements. The color can be accessed via the getPrimaryColor method.

The method returns null if a primary color isn’t configured in the UEM.

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 27 of 37

Next steps
This completes initial implementation of dynamic branding.

Test the changes by installing the application on a device, perhaps enrolling with a

UEM that has enterprise branding configured if you made use of enterprise

branding resources.

See the appendix to this document for:

Instructions for how to configure enterprise branding, if needed.

Annotated Splash Screen and Login Screen images that show where
configurable elements appear in the SDK user interface.

Instructions for how to reset application state, which could be used to force the
SDK to replay some interactions in which brand resources appear.

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 28 of 37

Task: Configure Android 12 Splashscreen
Android 12, enables a new launch animation with system splashscreen using

application launcher icon.

https://developer.android.com/develop/ui/views/launch/splash-screen

To replace Android 12 splashscreen icon, override splash logo attribute, in

res/values-v31/styles.xml. Splashscreen icon should be vector drawable,

and must be sized as per the adaptive icon guideline for a smoother transition

from Android 12 splashscreen to sdk splashscreen.

This snippet illustrates the configuration:
<?xml version="1.0" encoding="utf-8"?>

<resources xmlns:tools="http://schemas.android.com/tools">

 <style tools:override="true" name="VisionTheme.System.SplashScreen"

 parent="VisionTheme.System.BaseSplashScreen">

 <item name="splashLogo">@drawable/ic_splash</item>

 </style>

 <!-- Other style definitions here. -->

</resources>

Above configuration is used to customize Android 12 splashscreen logo, and

application should Implement Static Application Branding to setup static branding.

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 29 of 37

https://developer.android.com/develop/ui/views/launch/splash-screen
https://developer.android.com/guide/practices/ui_guidelines/icon_design_adaptive

Appendix: How to configure enterprise branding in the
management console
You can configure enterprise branding in the Workspace ONE management

console by following these instructions. These are provided here for application

developer convenience and aren’t intended to replace the system administrator

user guides for the Workspace ONE product.

For context of when these instructions would be followed, see Support Enterprise

Branding.

1. Open the Workspace ONE management console in a web browser and log in.

This opens the dashboard.

2. Select an organization group.

By default, the Global group is selected.

3. Navigate to: Groups & Settings, All Settings, Apps, Settings and Policies,

Settings.

This opens a configuration screen, on which a number of settings can be

switched on and off, and configured.

4. For the Branding setting, select Enabled.

When Enabled is selected, further controls will be displayed.

5. Use the controls to configure the enterprise branding.

For example:

Upload images to all the Android Background Image slots. It is recommended

to use small image files, no more than 100kb in size.

One of the images that you upload will appear on the SDK splash screen that

is displayed when the application starts cold.

Upload images to all the Android Company Logo Phone and Tablet slots. It is

recommended to use small image files, no more than 100kb in size.

One of the images that you upload will appear on the SDK login screen that is

displayed when, for example, the end user sets a passcode after registration.

Set the Primary Color value.

The progress bar on the SDK splash screen will be the color that you set.

The background of, for example, the Next and Confirm navigation controls in

the set passcode interaction will be the color that you set.

-

-

-

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 30 of 37

6. Select Save to commit your changes to the configuration.

See also the console user interface screen capture, below.

Console User Interface Screen Capture
The following screen capture shows configuration of enterprise brand colors in

the management console. Configuration of brand images would be accessed by

scrolling down in the same location.

Screen capture 1: Console User Interface

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 31 of 37

Appendix: Branding elements on the splash screen
The following screen capture shows brand elements in the SDK splash screen.

Screen capture 2: Splash screen in the mobile SDK

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 32 of 37

Appendix: Branding elements on the login screen
The following screen capture shows brand elements in the SDK login screen.

Screen capture 3: Login screen in the mobile SDK

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 33 of 37

Appendix: Notification Icon
The following screen captures show the notification icon that can be branded.

Screen captures 4 and 5: Notification icon in bar and open

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 34 of 37

Appendix: How to reset application state
You can reset an application to its just-installed state by following these

instructions. Some SDK user interactions only take place once per installation. In

case you are testing the appearance of a branding resource in one of those

interactions, resetting the application might force the SDK to show that

interaction.

1. Open the App Info screen for the application whose data you want to reset.

For example, do one of the following.

From the device home screen, long press the application icon and then select
App info in the context menu that appears.

Open the device Settings and search for the application by its long name.
(The long name isn’t necessarily the same as the package identifier.)

Open the device Settings and navigate to Apps and notifications, then select
the application from the recent list, or from the all list.

2. Select Storage & cache.

This opens the Storage management screen for the application.

3. Select to Clear Storage, and confirm this if prompted.

All application data has now been deleted and the SDK instance will have been

reset to the just-installed state.

-

-

-

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 35 of 37

Appendix: How to add a color resource to an Android
application
You can configure color resources in Android Studio by following these

instructions. These are provided here for convenience; for definitive information,

see the Android developer website.

1. Open your project in Android Studio.

2. Under the application module, expand res, values, and then open the

colors.xml file.

3. Add a new <color> item inside the <resources>.

4. Set the name attribute, which you will need later.

5. Enter an initial hexadecimal value inside the item tags. For example:

<color name="appLine">#000000</color>

6. Click the coloured square that appears in the left margin of the editor, next to

the line number.

This opens a color picker control, populated with the current color.

7. Click or enter a color in the picker and it will overwrite the value in the tag.

8. Close the picker by clicking anywhere outside it in the editor.

Save the file and the color will have been added to the application resources.

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 36 of 37

Document Information

Published Locations
This document is available

in Markdown format, in the repository that also holds the sample code:

https://github.com/euc-releases/…Branding.md

in Portable Document Format (PDF), on the Omnissa website:

https://developer.omnissa.com/…Branding.pdf

Revision History
03jul2020 First publication, for 20.4 SDK for Android.

31jul2020 to 09dec2021 Updated for 20.7 to 21.11 SDK for Android releases.

26Jan2022 Updated for 22.1 SDK for Android.

28Feb2022 Updated for 22.2 SDK for Android.

04Apr2022 Updated for 22.3 SDK for Android.

29Apr2022 Updated for 22.4 SDK for Android.

06Jun2022 Updated for 22.5 SDK for Android.

05Jul2022 Updated for 22.6 SDK for Android.

23Aug2022 Updated for 22.8 SDK for Android.

04Nov2022 Updated for 22.10 SDK for Android.

13Dec2022 Updated for 22.11 SDK for Android.

25Jan2023 Updated for 23.01 SDK for Android.

15Mar2023 Updated for 23.03 SDK for Android.

27Apr2023 Updated for 23.04 SDK for Android.

06Jun2023 Updated for 23.06 SDK for Android.

24Jul2023 Updated for 23.07 SDK for Android.

07Sep2023 Updated for 23.09 SDK for Android.

25Oct2023 Updated for 23.10 SDK for Android.

18Dec2023 Updated for 23.12 SDK for Android.

25Jan2024 Updated for 24.01 SDK for Android.

15May2024 Updated for 24.04 SDK for Android.

05Jul2024 Updated for 24.06 SDK for Android.

28Aug2024 Updated for 24.07 SDK for Android.

28Oct2024 Updated for 24.10 SDK for Android.

20Dec2024 Updated for 24.11 SDK for Android.

Workspace ONE Integration Guide for Android

Branding Integration Guide Page 37 of 37

https://github.com/euc-releases/workspace-ONE-SDK-integration-samples/blob/main/IntegrationGuideForAndroid/Guides/04Branding/WorkspaceONE_Android_Branding.md
https://developer.omnissa.com/docs/12357/WorkspaceONE_Android_Branding.pdf

