
Workspace ONE Integration Guide for Android

Base Integration Guide Page 1 of 30

Base Integration Guide

Workspace ONE for Android
Android applications can be integrated with the VMware Workspace ONE® platform, by

using its mobile software development kit. Complete the tasks below as a base for

feature integration.

This document is part of the Workspace ONE Integration Guide for Android set.

Table of Contents
Introduction...2

Integration Paths Diagram..5

Task: Add Client SDK...6

Project Structure Diagram..6

Software Development Kit Download Structure Diagram...7

Instructions..8

Task: Initialize Client SDK...13

Task: Add Framework..15

Task: Initialize Framework..18

Appendix: Early Version Support...26

Appendix: User Interface Screen Capture Images...28

Appendix: Troubleshooting..29

Document Information..30

Workspace ONE Integration Guide for Android

Base Integration Guide Page 2 of 30

Introduction
The tasks detailed below represent the basic steps in integrating your Android

application with the Workspace ONE platform. The tasks you will complete depend on

the required integration level of your application.

Integration at the Framework level is necessary if the application will make use of

platform features such as authentication, single sign-on, data encryption, or networking.

To integrate at the Client level, do the following tasks:

1. Add the Client SDK.

2. Initialize the Client SDK.

To integrate at the Framework level, do the following tasks:

1. Add the Client SDK.

2. Add the Framework.

3. Initialize the Framework.

Note that you don’t add Client SDK initialization if you are integrating at the Framework

level.

Agreement
Before downloading, installing or using the VMware Workspace ONE SDK you must:

Review the VMware Workspace ONE Software Development Kit License Agreement.

By downloading, installing, or using the VMware Workspace ONE SDK you agree to

these license terms. If you disagree with any of the terms, then do not use the

software.

Review the VMware Privacy Notice and the Workspace ONE UEM Privacy Disclosure,

for information on applicable privacy policies.

That applies however you obtain or integrate the software.

Integration Guides
This document is part of the Workspace ONE Integration Guide for Android set.

See other guides in the set for

an overview of integration levels and the benefits of each.

details of the integration preparation tasks, which must be done before the tasks in
this document.

An overview that includes links to all the guides is available

in Markdown format, in the repository that also holds the sample code:

https://github.com/vmware-samples/…IntegrationOverview.md

https://developer.vmware.com/docs/12215/WorkspaceONE_SDKLicenseAgreement.pdf
https://www.vmware.com/help/privacy.html
https://www.vmware.com/help/privacy/uem-privacy-disclosure.html
https://github.com/vmware-samples/workspace-ONE-SDK-integration-samples/blob/main/IntegrationGuideForAndroid/Guides/01Overview/WorkspaceONE_Android_IntegrationOverview.md

Workspace ONE Integration Guide for Android

Base Integration Guide Page 3 of 30

in Portable Document Format (PDF), on the VMware website:

https://developer.vmware.com/…IntegrationOverview.pdf

https://developer.vmware.com/docs/12354/WorkspaceONE_Android_IntegrationOverview.pdf

Workspace ONE Integration Guide for Android

Base Integration Guide Page 4 of 30

Compatibility
Instructions in this document have been tested with the following software versions.

Software Version

Workspace ONE SDK for Android 24.01

Workspace ONE management console 2306

Android Studio integrated development environment 2022.3.1

Gradle plugin for Android 7.2.2

Kotlin language 1.8.21

Workspace ONE Integration Guide for Android

Base Integration Guide Page 5 of 30

Integration Paths Diagram
The following diagram shows the tasks involved in base integration and the order in

which they can be completed. Integration Preparation is a prerequisite to base

integration. Framework integration is a prerequisite to integrating any of the framework

features, which are covered by other guides.

Add Client SDK

Initialize
Client SDK

Add Framework

Initialize
Framework

Client-level
integration

Framework
base integration

Preparation

Start

Framework
Feature

Integrations

Diagram 1: Base Integration paths

Workspace ONE Integration Guide for Android

Base Integration Guide Page 6 of 30

Task: Add Client SDK
Adding the Client SDK is a Workspace ONE platform integration task for Android

application developers. It applies to all levels of platform integration.

If you haven’t installed your application via Workspace ONE at least once, then do so

now. If you don’t, the application under development won’t work when installed via the

Android Debug Bridge (adb). Instructions for installing via Workspace ONE can be found

in the Integration Guides document set, in the Integration Preparation guide.

The first step will be to set up the build configuration and files. These instructions

assume that your application has a typical project structure, as follows:

Project files in the root directory.

Application module in a sub-directory.

Separate build.gradle files for the project and application.

Project Structure Diagram
The following diagram illustrates the expected project directory structure, and the

locations of changes to be made.

Add flatDir repository.
Add dependencies.

Project root directory./

build.gradle

Application module sub-directory./

Check minimum Gradle Android plugin version.

build.gradle

/ libs/
Copy in the required files:

AirWatchSDK-Version.aar

gson-Version.jar

Diagram 2: Project structure and locations of changes

Tip: It might be easier to see the structure, and identify which Gradle file is which, in the

Android Studio project navigator if you select the Project view, instead of the Android

view.

Workspace ONE Integration Guide for Android

Base Integration Guide Page 7 of 30

Software Development Kit Download Structure Diagram
The following diagram illustrates the directory structure of the SDK download.

Download archive

Documentation//

/ Libs/

/ AWPrivacy/

/ Javadocs/

/ AWFramework/

/ AWNetworkLibrary/

/ AWPrivacy/

/ ClientSDK/

AWFramework-Version.aar

/ dependencies/

Files for third party libraries.

open_source_license_ProductVersion.txt

/ Sample Code/

Other directories
have the same
structure as under
AWFramework/

Workspace ONE SDK Documentation.txt

The .txt files
include links to the
published
locations of the
documentation.

AWPrivacy.txt

WS1 SDK Agreement.pdf

Diagram 3: Download structure of the SDK for Android

Files from within the above structure are copied under your application project in the

following instructions.

Workspace ONE Integration Guide for Android

Base Integration Guide Page 8 of 30

Instructions
Proceed as follows.

Build Configuration and Files
First, update the build configuration and add the required library files.

1. Update the Gradle Android plugin version, if necessary.

In the project build.gradle file, check the Android plugin version. This is typically near

the top of the file, inside the buildscript block, in the dependencies sub-block.

The top of the file might look like this:

buildscript {
 ...
 repositories {
 ...
 }
 dependencies {
 classpath 'com.android.tools.build:gradle:7.2.2'
 ...
 }
}

In this example, the Gradle Android plugin version is 7.2.2

Ensure that the plugin version is at least 7.2.1

The location of this change is shown in the Project Structure Diagram.

2. Add the required packaging and compile options.

In the application build.gradle file, in the android block, add the Java version

compatibility declarations shown in the following snippet.

...
android {
 compileSdk 33

 // Following blocks are added.
 compileOptions {
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }
 kotlinOptions {
 jvmTarget = "1.8"
 }
 packagingOptions {
 exclude 'META-INF/kotlinx-serialization-runtime.kotlin_module'
 }
 // End of added blocks.

 defaultConfig {
 targetSdk 33
 ...
 }
 buildTypes {
 ...
 }
}

Workspace ONE Integration Guide for Android

Base Integration Guide Page 9 of 30

3. Add the required libraries to the build.

Still in the application build.gradle file, in the dependencies block, add references to

the required libraries. For example:

repositories {
 maven {
 url 'https://vmwaresaas.jfrog.io/artifactory/Workspace-ONE-Android-SDK/'
 }
}

dependencies {
 // Integrate Workspace ONE at the Client level.
 //
 // Before downloading, installing, or using the VMware Workspace ONE
 // SDK you must:
 //
 // - Review the VMware Workspace ONE Software Development Kit License
 // Agreement that is posted here.
 // https://developer.vmware.com/docs/12215/WorkspaceONE_SDKLicenseAgreement.pdf
 //
 // By downloading, installing, or using the VMware Workspace ONE SDK you
 // agree to these license terms. If you disagree with any of the terms, then
 // do not use the software.
 //
 // - Review the VMware Privacy Notice and the Workspace ONE UEM Privacy
 // Disclosure for information on applicable privacy policies.
 // https://www.vmware.com/help/privacy.html
 // https://www.vmware.com/help/privacy/uem-privacy-disclosure.html
 implementation "com.airwatch.android:AirWatchSDK:24.01"
}

The location of this change is shown in the Project Structure Diagram.

This completes the required changes to the build configuration. Build the application to

confirm that no mistakes have been made. After that, continue with the next step, which

is Anchor Event Handler Implementation.

In case you encounter an error, check the Early Version Support Build Error first.

If you haven’t installed your application via Workspace ONE at least once, then the

application under development won’t work when installed via the Android Debug Bridge

(adb). Instructions for installing via Workspace ONE can be found in the Integration

Guides document set, in the Integration Preparation guide.

Workspace ONE Integration Guide for Android

Base Integration Guide Page 10 of 30

Anchor Event Handler Implementation
The Workspace ONE Client SDK runtime receives various essential notifications from the

management console. An implementation of a specific Android broadcast receiver and

action handler must be added to your application to support this. From SDK 23.04

onwards, application need not add implementation for AirWatchSDKBaseIntentService,

and must be removed.

Proceed as follows.

1. Implement a Workspace ONE SDK Event handler class.

Add a new class to your application.

Declare the new class and implement WS1AnchorEvents interface.

While upgrading to SDK 23.04 or above, migrate AirWatchSDKBaseIntentService
API implementation to WS1AnchorEvents.

In Java, the class could look like this:

public class AppWS1AnchorEvents implements WS1AnchorEvents {
 @Override
 public void onClearAppDataCommandReceived(Context context, ClearReasonCode reasonCode) {}

 @Override
 public void onApplicationConfigurationChange(Bundle applicationConfiguration, Context context) {}

 @Override
 public void onApplicationProfileReceived(
 Context context,
 String profileId,
 ApplicationProfile awAppProfile) {}

 @Override
 public void onAnchorAppStatusReceived(Context context, AnchorAppStatus awAppStatus) {}

 @Override
 public void onAnchorAppUpgrade(Context context, boolean isUpgrade) {}
}

In Kotlin, the class could look like this:

class AppWS1AnchorEvents : WS1AnchorEvents {
 override fun onClearAppDataCommandReceived(context: Context?, reasonCode: ClearReasonCode?) {}

 override fun onApplicationConfigurationChange(
 applicationConfiguration: Bundle?,
 context: Context?,
) {}

 override fun onApplicationProfileReceived(
 context: Context?,
 profileId: String?,
 awAppProfile: ApplicationProfile?) {}

 override fun onAnchorAppStatusReceived(context: Context?, awAppStatus: AnchorAppStatus?) {}

 override fun onAnchorAppUpgrade(context: Context?, isUpgrade: Boolean) {}
}

-

-

-

Workspace ONE Integration Guide for Android

Base Integration Guide Page 11 of 30

2. Declare the permission and interaction filter.

In the Android manifest file, inside the manifest block but outside the application
block, add declarations like the following.

<?xml version="1.0" encoding="utf-8"?>
<manifest ...>

<!-- Following declarations are added -->
<uses-permission android:name="com.airwatch.sdk.BROADCAST" />

<!-- Following tag applies to compileSdkVersion 30 or later. -->
<queries>
 <intent>
 <action android:name="com.airwatch.p2p.intent.action.PULL_DATA" />
 </intent>
</queries>

<!-- End of added declarations.>

<application ...>
...

3. Declare the notification receiver. From SDK 23.04 onwards, declaration for

AirWatchSDKBaseIntentService must be removed from manifest.

In the Android manifest file, inside the application block, add receiver declaration

like the following.

<application>

 ...

 <receiver
 android:name="com.airwatch.sdk.AirWatchSDKBroadcastReceiver"
 android:permission="com.airwatch.sdk.BROADCAST" >
 <intent-filter>
 <action android:name="${applicationId}.airwatchsdk.BROADCAST" />
 </intent-filter>
 <intent-filter>
 <action
 android:name="com.airwatch.intent.action.APPLICATION_CONFIGURATION_CHANGED"
 />

 <!--
 In the host attribute, replace com.your.package with the package name of your
 application.
 -->
 <data android:scheme="app" android:host="com.your.package" />

 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.PACKAGE_ADDED" />
 <action android:name="android.intent.action.PACKAGE_REMOVED" />
 <action android:name="android.intent.action.PACKAGE_REPLACED" />
 <action android:name="android.intent.action.PACKAGE_CHANGED" />
 <action android:name="android.intent.action.PACKAGE_RESTARTED" />
 <data android:scheme="package" />
 </intent-filter>
 </receiver>

</application>

Workspace ONE Integration Guide for Android

Base Integration Guide Page 12 of 30

4. Apps need to implement SDKClientConfig in their Application class and override

getEventHandler() and return WS1AnchorEvents Implementation object. From SDK

23.04 onwards, application need to migrate to SDKClientConfig instead of

AirWatchSDKBaseIntentService.

 public class AppApplication extends Application implements SDKClientConfig {
 @NonNull
 @Override
 public WS1AnchorEvents getEventHandler() {
 return new AppWS1AnchorEvents();
 }
 }`

This completes the required anchor event handler implementation. Build the application

to confirm that no mistakes have been made.

If you haven’t installed your application via Workspace ONE at least once, then the

application under development won’t work when installed via the Android Debug Bridge

(adb). Instructions for installing via Workspace ONE can be found in the Integration

Guides document set, in the Integration Preparation guide.

Next Steps
After completing the above, continue with the next task, which could be either of the

following.

Initialize the Client SDK, if your application will use only Client-level integration.

Add the Framework, otherwise.

Workspace ONE Integration Guide for Android

Base Integration Guide Page 13 of 30

Task: Initialize Client SDK
Client SDK initialization is a Workspace ONE platform integration task for Android

application developers. It applies only to Client-level integration, not to Framework

integration.

The Client SDK initialization task is dependent on the Add the Client SDK task. The

following instructions assume that the dependent task is complete already.

SDKManager
The main class of the Client SDK is SDKManager. It must be initialized before use.

Initialize it by calling the init class method. The call must be on a background thread.

An Android Context object is required, which could be an Activity instance for example.

In Java, code for an Activity that initializes the SDKManager could look like this:

public class MainActivity extends Activity {
 SDKManager sdkManager = null;

 @Override
 protected void onCreate(@Nullable Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ...
 startSDK();
 }

 private void startSDK() { new Thread(new Runnable() {
 @Override
 public void run() {
 try {
 final SDKManager initSDKManager = SDKManager.init(MainActivity.this);
 sdkManager = initSDKManager;
 toastHere(
 "Workspace ONE console version:" + initSDKManager.getConsoleVersion());
 }
 catch (Exception exception) {
 sdkManager = null;
 toastHere(
 "Workspace ONE failed " + exception + ".");
 }
 }
 }).start(); }

 private void toastHere(final String message) {runOnUiThread(new Runnable() {
 @Override
 public void run() {
 Toast.makeText(MainActivity.this, message, Toast.LENGTH_LONG).show();
 }
 });}

 ...
}

Workspace ONE Integration Guide for Android

Base Integration Guide Page 14 of 30

In Kotlin, code for an Activity that initializes the SDKManager could look like this:

class MainActivity : Activity() {

 private var sdkManager: SDKManager? = null

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 ...
 startSDK()
 }

 private fun startSDK() { thread {
 try {
 val initSDKManager = SDKManager.init(this)
 sdkManager = initSDKManager
 toastHere("Workspace ONE console version:${initSDKManager.consoleVersion}")
 }
 catch (exception: Exception) {
 sdkManager = null
 toastHere("Workspace ONE failed $exception.")
 }
 } }

 private fun toastHere(message: String) { runOnUiThread {
 Toast.makeText(this, message, Toast.LENGTH_LONG).show()
 } }

 ...
}

Calling the init method completes SDK Manager initialization. Build and run the

application to verify that no mistakes have been made.

Next Steps
After the SDKManager instance has been received from the init call, its other methods

can be called. Check the reference documentation for details of the programming

interface.

This completes Client-level integration.

Workspace ONE Integration Guide for Android

Base Integration Guide Page 15 of 30

Task: Add Framework
Adding the Framework is a Workspace ONE platform integration task for Android

application developers. Adding the Framework is necessary if the application will make

use of platform features such as authentication, single sign-on, data encryption, or

networking.

This task is dependent on the Add the Client SDK task. The following instructions assume

that the dependent task is complete already.

Build Configuration and Files
This task involves changing your application project’s build configuration and files. These

instructions assume that your application has a typical project structure, same as the

Add Client SDK task, as shown in the Project Structure Diagram.

A number of libraries will be added to the project. These can be divided into the

following categories.

Workspace ONE libraries that are part of the SDK.

Third party libraries that are distributed with the SDK.

Third party libraries that are hosted remotely, for example in a Maven repository, and
included via Gradle.

Proceed as follows.

1. Add the required libraries to the build.

In the application build.gradle file, in the dependencies block, add references to the

required libraries. For example:

repositories {
 maven {
 url 'https://vmwaresaas.jfrog.io/artifactory/Workspace-ONE-Android-SDK/'
 }
}

dependencies {
 // Integrate Workspace ONE at the Framework level.
 //
 // Before downloading, installing, or using the VMware Workspace ONE
 // SDK you must:
 //
 // - Review the VMware Workspace ONE Software Development Kit License
 // Agreement that is posted here.
 // https://developer.vmware.com/docs/12215/WorkspaceONE_SDKLicenseAgreement.pdf
 //
 // By downloading, installing, or using the VMware Workspace ONE SDK you
 // agree to these license terms. If you disagree with any of the terms, then
 // do not use the software.
 //
 // - Review the VMware Privacy Notice and the Workspace ONE UEM Privacy
 // Disclosure for information on applicable privacy policies.
 // https://www.vmware.com/help/privacy.html
 // https://www.vmware.com/help/privacy/uem-privacy-disclosure.html
 implementation "com.airwatch.android:AWFramework:24.01"
}

Workspace ONE Integration Guide for Android

Base Integration Guide Page 16 of 30

Your application might already require different versions of some of the same libraries

required by the SDK. Warning messages will be generated in the build output in that

case, for example stating that there are incompatible JAR files in the classpath.

You can resolve this by selecting one or other version, either the SDK requirement or

your app’s original requirement.

In principle, the SDK isn’t supported with versions other than those given in the above.

In practice however, problems are unlikely to be encountered with later versions.

2. Add annotation processor support.

In the application build.gradle file, add the kotlin-kapt plugin. The plugin can be

added in the plugins block at the start of the file, for example as shown in the

following snippet.

plugins {
 id 'com.android.application'
 id 'kotlin-android'
 id 'kotlin-android-extensions'

 // Following line adds the required plugin.
 id 'kotlin-kapt'
}
...

3. Add the required packaging and compile options.

Still in the application build.gradle file, in the android block, add the packaging option

shown in the following snippet.

...
android {
 compileSdk 33

 // Following block is added.
 packagingOptions {
 pickFirst '**/*.so'
 }
 // End of added block.

 defaultConfig {
 targetSdk 33
 ...
 }
 buildTypes {
 ...
 }
}
...

The above assumes that support for earlier Android operating system versions and

processor architectures isn’t required in the application. If support is required, also

follow the instructions in the Appendix: Early Version Support.

Workspace ONE Integration Guide for Android

Base Integration Guide Page 17 of 30

4. App targeting API level 31 or above, override getEventHandler() in App’s Application

class to return WS1AnchorEvents object.

 public class AppApplication extends AWApplication {
 @NonNull
 @Override
 public WS1AnchorEvents getEventHandler() {
 return new AppWS1AnchorEvents();
 }
 }

This completes the required changes to the build configuration. Build the application to

confirm that no mistakes have been made. After that, continue with the next task, which

is to Initialize the Framework.

In case you encounter an error, check the Early Version Support Build Error first.

Workspace ONE Integration Guide for Android

Base Integration Guide Page 18 of 30

Task: Initialize Framework
Framework initialization is a Workspace ONE platform integration task for Android

application developers. It applies to Framework-level integration, not to Client-level

integration.

The Framework initialization task is dependent on the Add the Framework task. The

following instructions assume that the dependent task is complete already.

Select initialization class
Framework initialization can start from either an Android Application subclass, referred to

as initialization by delegation, or from a Workspace ONE SDK AWApplication subclass,

referred to as initialization by extension. Choose the better option for your application,

as follows.

If your application has an Android Application subclass, then choose it as the

Framework initialization class. Proceed to these instructions:

Initialize by delegation from an Android application subclass.

Otherwise, create a Workspace ONE SDK AWApplication subclass and it will be the

Framework initialization class. Proceed to these instructions:

Create an initialization subclass by extension.

Workspace ONE Integration Guide for Android

Base Integration Guide Page 19 of 30

Initialize by delegation from an Android Application
subclass
Follow these instructions to initialize from an Android Application subclass. This is an

alternative to creating an AWApplication subclass. See Select initialization class for a

discussion of the alternatives.

Update your Android Application subclass as follows.

Declare that the class implements the AWSDKApplication interface.

Add an AWSDKApplicationDelegate instance as a property.

Move the code from the body of your onCreate method, if any, to an override of the

AWSDKApplication onPostCreate method.

Override the AWSDKApplication getMainActivityIntent() method to return an Intent for

the application’s main Activity.

Override the following Android Application methods:

onCreate

getSystemService

attachBaseContext

The required overrides are shown in the code snippets below, in Kotlin and in Java.

Implement all the other AWSDKApplication methods by calling the same method in the

AWSDKApplicationDelegate instance.

Kotlin delegation-by can be used for the implementation. This is illustrated in the

Initialization by delegation in Kotlin code snippet below.

-

-

-

Workspace ONE Integration Guide for Android

Base Integration Guide Page 20 of 30

Initialization by delegation in Java
In Java, the class could look like this:

public class Application extends android.app.Application implements AWSDKApplication {
 // SDK Delegate.
 private final AWSDKApplicationDelegate awDelegate = new AWSDKApplicationDelegate();
 @NotNull
 @Override
 public AWSDKApplication getDelegate() { return awDelegate; }

 // Android Application overrides for integration.
 @Override
 public void onCreate() {
 super.onCreate();
 this.onCreate(this);
 }

 @Override
 public Object getSystemService(String name) {
 return this.getAWSystemService(name, super.getSystemService(name));
 }

 @Override
 public void attachBaseContext(@NotNull Context base) {
 super.attachBaseContext(base);
 attachBaseContext(this);
 }

 // Application-specific overrides.
 @Override
 public void onPostCreate() {
 // Code from the application's original onCreate() would go here.
 }

 @NonNull
 @Override
 public Intent getMainActivityIntent() {
 // Replace MainActivity with application's original main activity.
 return new Intent(getApplicationContext(), MainActivity.class);
 }

 // Mechanistic AWSDKApplication abstract method overrides.

 // Methods that return a value could follow this as a template:
 @Nullable
 @Override
 public Object getAWSystemService(@NotNull String name, @Nullable Object systemService) {
 return awDelegate.getAWSystemService(name, systemService);
 }

 // Methods that return void could follow this as a template:
 @Override
 public void attachBaseContext(@NotNull android.app.Application application) {
 awDelegate.attachBaseContext(application);
 }

 // ... Many more overrides here.
}

Workspace ONE Integration Guide for Android

Base Integration Guide Page 21 of 30

Initialization by delegation in Kotlin
In Kotlin, the class could look like this:

// This class uses Kotlin delegation to implement the AWSDKApplication
// interface.
// A new AWSDKApplicationDelegate instance is allocated on the fly as the
// delegate. For background on Kotlin delegation, see:
// https://kotlinlang.org/docs/reference/delegation.html
open class Application:
 android.app.Application(),
 AWSDKApplication by AWSDKApplicationDelegate()
{
 // Android Application overrides for integration.
 override fun onCreate() {
 super.onCreate()
 onCreate(this)
 }

 override fun getSystemService(name: String): Any? {
 return getAWSystemService(name, super.getSystemService(name))
 }

 override fun attachBaseContext(base: Context?) {
 super.attachBaseContext(base)
 attachBaseContext(this)
 }

 // Application-specific overrides.
 override fun onPostCreate() {
 // Code from the application's original onCreate() would go here.
 }

 override fun getMainActivityIntent(): Intent {
 // Replace MainActivity with application's original main activity.
 return Intent(applicationContext, MainActivity::class.java)
 }
}

Next
This completes initialization from an Android Application subclass. Now continue with the

next step, which is to configure the initialization class in the manifest.

Workspace ONE Integration Guide for Android

Base Integration Guide Page 22 of 30

Create an initialization subclass by extension
Follow these instructions to create a Framework initialization AWApplication subclass.

This is an alternative to initialising from an Android Application subclass. See Select

initialization class for a discussion of the alternatives.

Add to your application code a new class that:

Is declared as an AWApplication subclass.

Overrides the getMainActivityIntent() method to return an Intent for the application’s
main Activity.

Implements the other required methods with dummies.

In Java, the class could look like this:

// Note the fully qualified class name in the extends declaration.
public class AWApplication extends com.airwatch.app.AWApplication {
 @NotNull
 @Override
 public Intent getMainActivityIntent() {
 return new Intent(getApplicationContext(), MainActivity.class);
 }

 @Override
 public void onSSLPinningRequestFailure(
 @NotNull String host, X509Certificate x509Certificate
) {
 }

 @Override
 public void onSSLPinningValidationFailure(
 @NotNull String host, X509Certificate x509Certificate
) {
 }
}

In Kotlin, the class could look like this:

// Note the fully qualified base class name.
open class AWApplication: com.airwatch.app.AWApplication() {
 override fun getMainActivityIntent(): Intent {
 return Intent(applicationContext, MainActivity::class.java)
 }

 override fun onSSLPinningRequestFailure(
 host: String,
 serverCACert: X509Certificate?
) {
 }

 override fun onSSLPinningValidationFailure(
 host: String,
 serverCACert: X509Certificate?
) {
 }

}

This completes the creation of an initialization subclass. Now continue with the next step,

which is to configure the initialization class in the manifest.

Configure the initialization class in the manifest

Workspace ONE Integration Guide for Android

Base Integration Guide Page 23 of 30

Follow these instructions to configure your selected initialization class in the Android

manifest. The initialization class will be either the existing Android Application subclass, or

a new AWApplication subclass that was just created. See Select initialization class for a

discussion of the alternatives.

Proceed as follows.

1. Add the Android schema tools.

The tools can be added at the top of the file, in the manifest tag, for example like this:

<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.integrationguide"
 xmlns:tools="http://schemas.android.com/tools"
 >

2. Update the application declaration.

The application declaration must be updated to:

Declare an application class name, if it wasn’t already declared.

Replace the label.

Override the allowBackup flag with the setting from the SDK manifest.

These updates can be made in the application tag, for example like this:

<application
 android:name=".YourApplicationOrAWApplicationSubClass"
 android:label="@string/app_name"
 ...
 tools:replace="android:label, android:allowBackup, android:networkSecurityConfig"
 >

3. Set the launcher and main Activity to be from the Framework.

If the application had a previous declaration for launcher and main Activity, remove it.

Instead, declare the Framework SDKSplashActivity as launcher and main.

New declarations could look like this, for example:

<activity
 android:name=".MainActivity"
 >
 <!-- Original launcher and main declarations removed. -->
</activity>
<activity
 android:name="com.airwatch.login.ui.activity.SDKSplashActivity"
 android:label="@string/app_name"
 >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

4. From SDK 23.04 onwards, application need not add implementation for

AirWatchSDKBaseIntentService, and must be removed while upgrading SDK.

5. Declare the required permission.

-

-

-

Workspace ONE Integration Guide for Android

Base Integration Guide Page 24 of 30

If your app targets Android 13 or higher, then in order to see notifications declare the

below permission in your app’s manifest file if not present already.

developer.android.com/…13/…#notification-permission

 <uses-permission android:name="android.permission.POST_NOTIFICATIONS"/>

This completes the initialization class configuration.

Request the required Permissions
If your app targets Android 13 or higher, request the new notification permission from

your app’s MainActivity if not requested already. developer.android.com/…13/…

#notification-permission

Below is the code snippet, for example:

 private void setupPermissions() {
 if(Build.VERSION.SDK_INT >= Build.VERSION_CODES.TIRAMISU) {
 int permission = ContextCompat.checkSelfPermission(
 this,
 Manifest.permission.POST_NOTIFICATIONS
);

 if (permission != PackageManager.PERMISSION_GRANTED) {
 ActivityCompat.requestPermissions(
 this,
 new String[]{Manifest.permission.POST_NOTIFICATIONS},
 NOTIFICATION_REQ_CODE
);
 }
 }
 }

 @Override
 public void onRequestPermissionsResult(int requestCode, @NonNull String[] permissions, @NonNull int[] grantResults) {
 super.onRequestPermissionsResult(requestCode, permissions, grantResults);

 if (requestCode == NOTIFICATION_REQ_CODE){
 if (grantResults.length == 0 || grantResults[0] != PackageManager.PERMISSION_GRANTED) {
 toastHere("Notification Permission has been denied by user");
 } else {
 toastHere("Notification Permission has been granted by user");
 }
 }
 }

This completes requesting the required permissions.

Next Steps
Build and run the application to confirm that no mistakes have been made.

The Workspace ONE splash screen should be shown at launch, Other SDK screens might

also be shown depending on the configuration in the management console. See the

Appendix: User Interface Screen Capture Images.

After completing the above, you can proceed to:

Networking integration.

Branding integration.

https://developer.android.com/about/versions/13/behavior-changes-all#notification-permission
https://developer.android.com/about/versions/13/behavior-changes-all#notification-permission
https://developer.android.com/about/versions/13/behavior-changes-all#notification-permission

Workspace ONE Integration Guide for Android

Base Integration Guide Page 25 of 30

Integration of other framework features.

See the respective documents in the Workspace ONE Integration Guide for Android set.

An overview that includes links to all the guides in the set is available

in Markdown format, in the repository that also holds the sample code:

https://github.com/vmware-samples/…IntegrationOverview.md

in Portable Document Format (PDF), on the VMware website:

https://developer.vmware.com/…IntegrationOverview.pdf

https://github.com/vmware-samples/workspace-ONE-SDK-integration-samples/blob/main/IntegrationGuideForAndroid/Guides/01Overview/WorkspaceONE_Android_IntegrationOverview.md
https://developer.vmware.com/docs/12354/WorkspaceONE_Android_IntegrationOverview.pdf

Workspace ONE Integration Guide for Android

Base Integration Guide Page 26 of 30

Appendix: Early Version Support
The Workspace ONE SDK can be integrated with early versions of Android, by following

some additional steps. Early versions here means back to 5.0 Android, which is API level

21. If your application won’t support devices running early Android versions, skip the

instructions in this section.

To support early versions, change the build configuration to:

Enable Multidex explicitly.

To make the changes, proceed as follows.

1. Configure the build.

In the application build.gradle file, in the android block, within the defaultConfig

block, add the required settings, for example:

...
android {
 ...
 defaultConfig {
 ...
 multiDexEnabled true
 ...
 }
 ...
}
...

This concludes the required changes to support early Android versions. Build the

application to confirm that no mistakes have been made.

In case the above changes don’t seem to work, you can instead try the changes in the

Alternative Early Version Support section, below.

All being well, continue with other integration tasks.

Alternative Early Version Support
The following code snippet shows an alternative approach to early version support to

the above build configuration change. The alternative is to specify a conditional minimum

SDK version, dependent on the build type.

Use this approach in case the first approach doesn’t work or isn’t suitable for your app.

Workspace ONE Integration Guide for Android

Base Integration Guide Page 27 of 30

ext {
 minSdkVersion = 21
}
android {
 defaultConfig {
 minSdkVersion getMinSDK()
 }
}
buildTypes {
 release {
 minifyEnabled true
 signingConfig signingConfigs.debug
 }
}
def getMinSDK() {
 if (gradle.startParameter.taskNames.toString().contains("Debug")) {
 return 23
 } else {
 return minSdkVersion
 }
}

Early Version Support Build Error
If early version support is required but hasn’t been implemented, error messages like the

following will be shown at build time.

Caused by: com.android.tools.r8.utils.AbortException: Error: null,
Cannot fit requested classes in the main-dex file (# methods: 66121 > 65536)
Caused by: java.lang.RuntimeException:
com.android.builder.dexing.DexArchiveMergerException: Error while merging dex archives

To resolve the error, make the build configuration changes at the start of this Appendix:

Early Version Support.

Background Reading for Early Version Support
For background, see these pages on the Android developer website.

Multidex:
https://developer.android.com/…multidex#mdex-on-l

(Some PDF viewers incorrectly escape the hash anchor marker in the above links. If that

happens, edit the link in the browser address bar.)

https://developer.android.com/studio/build/multidex#mdex-on-l

Workspace ONE Integration Guide for Android

Base Integration Guide Page 28 of 30

Screen capture 1: Splash screen Screen capture 2: Login screen

Appendix: User Interface Screen Capture Images
The following images show screens that are part of the Workspace ONE SDK user

interface.

The splash screen should be shown during every launch of an application that is

integrated to the Framework level. The login screen might be shown afterwards,

depending on the application state and the configuration in the management console.

Workspace ONE Integration Guide for Android

Base Integration Guide Page 29 of 30

Appendix: Troubleshooting

Kotlin Compatibility
Occasionally, one may encounter an exception containing the message “Class ‘kotlin.Unit’

was compiled with an incompatible version of Kotlin. The binary version of its metadata is

1.7.1, expected version is 1.5.1.” during compilation. This exception is due to incompatible

versions of your app with the Workspace One SDK. As of Release 23.03, all apps

consuming WS1 will be required to use Kotlin v1.7.1 or higher.

Empty Response from AirWatch MDM Service
Occasionally, one may encounter the message “Empty Response from Airwatch MDM

Service” in the adb log during app integration into Workspace ONE. This error message

is triggered when the app was not installed via Intelligent Hub.

To resolve this error, it is recommended to upload the APK to the UEM once, then install

the app through Intelligent Hub.

For detailed instructions please refer to the Integration Preperation Guide, specifically

Appendix: How to upload an Android application to the management console

as Markdown: Preperation Guide - Appendix: How to upload an Android application to
the management console

as PDF: Preperation Guide - Appendix: How to upload an Android application to the
management console

and

Task: Install application via Workspace ONE

as Markdown: Preparation Guide - Task: Install application via Workspace ONE

as PDF: Preparation Guide - Task: Install application via Workspace ONE

Once the APK has been uploaded to the UEM and installed via Workspace ONE, the app

can then be subsequently side-loaded by the ABD provided the side load is signed by

the same developer key as the original upload. To ensure your APK is signed on every

build please refer to the Preperation Guide, specifically

Appendix: How to generate a signed Android package every build

as Markdown Preparation Guide - How to generate a signed Android package every
build

as PDF: Preparation Guide - How to generate a signed Android package every build

https://github.com/vmware-samples/workspace-ONE-SDK-integration-samples/blob/main/IntegrationGuideForAndroid/Guides/02Preparation/WorkspaceONE_Android_IntegrationPreparation.md#appendix-how-to-upload-an-android-application-to-the-management-console-how-to-upload-an-android-application-to-the-management-console
https://github.com/vmware-samples/workspace-ONE-SDK-integration-samples/blob/main/IntegrationGuideForAndroid/Guides/02Preparation/WorkspaceONE_Android_IntegrationPreparation.md#appendix-how-to-upload-an-android-application-to-the-management-console-how-to-upload-an-android-application-to-the-management-console
https://vdc-download.vmware.com/vmwb-repository/dcr-public/5c29b39f-3090-49aa-8fa6-1fd0d9fd0020/a5fe6014-4fe6-4ac7-9290-c67343d1f27d/WorkspaceONE_Android_IntegrationPreparation.pdf#page=15
https://vdc-download.vmware.com/vmwb-repository/dcr-public/5c29b39f-3090-49aa-8fa6-1fd0d9fd0020/a5fe6014-4fe6-4ac7-9290-c67343d1f27d/WorkspaceONE_Android_IntegrationPreparation.pdf#page=15
https://github.com/vmware-samples/workspace-ONE-SDK-integration-samples/blob/main/IntegrationGuideForAndroid/Guides/02Preparation/WorkspaceONE_Android_IntegrationPreparation.md#task-install-application-via-workspace-one-install-your-application-via-workspace-one
https://vdc-download.vmware.com/vmwb-repository/dcr-public/5c29b39f-3090-49aa-8fa6-1fd0d9fd0020/a5fe6014-4fe6-4ac7-9290-c67343d1f27d/WorkspaceONE_Android_IntegrationPreparation.pdf#page=5
https://github.com/vmware-samples/workspace-ONE-SDK-integration-samples/blob/main/IntegrationGuideForAndroid/Guides/02Preparation/WorkspaceONE_Android_IntegrationPreparation.md#appendix-how-to-generate-a-signed-android-package-every-build-how-to-generate-a-signed-android-package-every-build
https://github.com/vmware-samples/workspace-ONE-SDK-integration-samples/blob/main/IntegrationGuideForAndroid/Guides/02Preparation/WorkspaceONE_Android_IntegrationPreparation.md#appendix-how-to-generate-a-signed-android-package-every-build-how-to-generate-a-signed-android-package-every-build
https://vdc-download.vmware.com/vmwb-repository/dcr-public/5c29b39f-3090-49aa-8fa6-1fd0d9fd0020/a5fe6014-4fe6-4ac7-9290-c67343d1f27d/WorkspaceONE_Android_IntegrationPreparation.pdf#page=13

Workspace ONE Integration Guide for Android

Base Integration Guide Page 30 of 30

Document Information

Published Locations
This document is available

in Markdown format, in the repository that also holds the sample code:

https://github.com/vmware-samples/…BaseIntegration.md

in Portable Document Format (PDF), on the VMware website:

https://developer.vmware.com/…BaseIntegration.pdf

Revision History
03jul2020 First publication, for 20.4 SDK for Android.

31jul2020 to 09dec2021 Updated for 20.7 to 21.11 SDK for Android releases.

26Jan2022 Update for 22.1 SDK for Android.

28Feb2022 Update for 22.2 SDK for Android.

04Apr2022 Updated for 22.3 SDK for Android.

29Apr2022 Updated for 22.4 SDK for Android.

06Jun2022 Updated for 22.5 SDK for Android.

05Jul2022 Updated for 22.6 SDK for Android.

23Aug2022 Updated for 22.8 SDK for Android.

04Nov2022 Updated for 22.10 SDK for Android.

13Dec2022 Updated for 22.11 SDK for Android.

25Jan2023 Updated for 23.01 SDK for Android.

15Mar2023 Updated for 23.03 SDK for Android.

27Apr2023 Updated for 23.04 SDK for Android.

06Jun2023 Updated for 23.06 SDK for Android.

24Jul2023 Updated for 23.07 SDK for Android.

07Sep2023 Updated for 23.09 SDK for Android.

25Oct2023 Updated for 23.10 SDK for Android.

18Dec2023 Updated for 23.12 SDK for Android.

25Jan2024 Updated for 24.01 SDK for Android.

Legal
VMware LLC 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877–486–9273 Fax 650–427–5001 www.vmware.com
Copyright © 2024 VMware LLC All rights reserved.
This content is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at https://www.vmware.com/go/patents. VMware is a registered
trademark or trademark of VMware LLC and its subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.
The Workspace ONE Software Development Kit integration samples are licensed under a two-clause BSD license.
SPDX-License-Identifier: BSD-2-Clause

https://github.com/vmware-samples/workspace-ONE-SDK-integration-samples/blob/main/IntegrationGuideForAndroid/Guides/03BaseIntegration/WorkspaceONE_Android_BaseIntegration.md
https://developer.vmware.com/docs/12356/WorkspaceONE_Android_BaseIntegration.pdf
https://www.vmware.com/go/patents

