
Developer Guide

Workspace ONE for iOS (Swift) Page 1 of 82

VMware Workspace ONE for iOS Developer Guide
The VMware Workspace ONE® Software Development Kit for iOS (Swift), is a set of tools that

incorporates functionality into custom-built, iOS applications. It enhances the security and functionality of

those applications and helps save time and money.

Table of Contents
Software Version and Compatibility...3

Operational Data...4

Set Up the SDK with Your App..5

Initialize the Workspace ONE SDK for iOS (Swift Package Manager or XCFramework)...6

Configure the Info.plist...10

Required and Optional AWController Delegate Callback Methods...11

Keychain Access Group Entitlements..12

Cluster Session Management and Reduced Flip Behavior for SSO...14

SDK settings property list and bundle..15

Test the SDK-Built App..17

Delete Workspace ONE SDK Data...18

SDK Stored Certificate Information..19

API to Retrieve Identity Certificates...21

SDK Payloads Reference, Code and Console...22

Authentication Type Payload Description..25

Prerequisites to Use SSO...26

Changes to Active Directory Passwords..34

Configure VMware Tunnel for App Tunneling...35

Set Up the Bundle and PLIST for Copy and Paste..37

Behavior of the Third-Party Keyboard Restriction...38

Use DLP to Control Links to Open in Workspace ONE Web and Workspace ONE Boxer..................................39

Restriction of Document Sharing...41

Restriction of Printing...44

Set Up the DataSampler Module for Analytics...46

Branding...48

Beacon Data Sent Upon Application Unlock or Sent Manually...52

Developer Guide

Workspace ONE for iOS (Swift) Page 2 of 82

Check the Compromised Status of Devices with Compromised Protection..53

Query Devices for MDM Information with DeviceInformationController...54

SDK Logging APIs for Levels...55

Restrictions...59

Custom Settings for the SDK..60

Encrypt Data on Devices...61

Enable and Code APNs in the Application...63

APIs to Use Custom Certificates for Your SDK-Built Apps...66

VMware Workspace ONE SDK for iOS (Swift) and the Apple App Review...68

Migrate the Objective-C Version to the Swift Version..71

Multitasking Split View Support...74

Fetch Application Status and Device Information...75

Application Attestation..76

Support for Tunnel with WKWebView..77

WorkspaceOne SDK Error lists..78

Document Information...82

Developer Guide

Workspace ONE for iOS (Swift) Page 3 of 82

Software Version and Compatibility
This version of the Workspace ONE Software Development Kit (SDK) for iOS (Swift) is compatible with the

following software.

Software Version

Workspace ONE SDK for iOS (Swift) 24.09

Workspace ONE UEM management console 2212 or later

Apple iOS 15 or later

Apple Xcode 15 or later

Swift language Any supported by the above Xcode versions

Developer Resources
Resources for integration of the software development kit (SDK) by application developers can be found

on the VMware website, here:

https://developer.omnissa.com/ws1-sdk-uem-ios/

The resources include earlier versions of the Developer Guide documentation, other technical

documentation, and the SDK itself. You will require a My Workspace One login in order to download the

SDK. Speak with your Workspace ONE UEM representative for access.

Corresponding Objective-C Interfaces
The examples in this document are in Swift. See the AWController Interface file for corresponding

Objective-C Interfaces if you import the Workspace ONE SDK for iOS (Swift) into an Objective-C

application.

https://developer.omnissa.com/ws1-sdk-uem-ios/

Developer Guide

Workspace ONE for iOS (Swift) Page 4 of 82

Operational Data
VMware collects a limited set of information from the Workspace ONE SDK to operate and support the

SDK within third-party apps, such as notifying customers about feature removal or platform compatibility.

This data is anonymized and analyzed in aggregate, and cannot be used to identify the application

containing the SDK or end user. This data is sent to api.artemis.omnissa.com. Please refer to Privacy

Notices online for more information about VMware data collection and privacy policies.

https://www.omnissa.com/trust-center/#privacy-policy

Developer Guide

Workspace ONE for iOS (Swift) Page 5 of 82

Set Up the SDK with Your App
Set up your application and the SDK and test the setup. Perform setup steps in order to reduce issues

with integration.

Procedure
1. Initialize by adding code to import the SDK and to run the correct protocol.

2. Register a callback scheme and configure the info.plist.

3. Set AWControllerDelegate callback methods.

4. Set keychain sharing to allow applications to share a single sign on session and to share data.
Use keychain access groups to share data between applications in the group.

Enable keychain sharing for SDK-built applications that already share the same AppIdentifierPrefix and
the same keychain access group.

5. Configure an AWSDKDefaultSettings.plist to customize the application with Workspace ONE SDK for iOS
(Swift) features.

6. Test the integration of your application with the Workspace ONE SDK for iOS (Swift), including the
delivery of profiles from the Workspace ONE UEM console to your application.

-

-

Developer Guide

Workspace ONE for iOS (Swift) Page 6 of 82

Initialize the Workspace ONE SDK for iOS (Swift Package Manager or
XCFramework)
Import the SDK and define initial values so that the SDK-built app can start, connect, and communicate

successful start up or start up errors.

Although integration through Swift Package Manager (SPM) is recommended, if developers want to

integrate SDK through XCFramework instead, navigate to XCFramework Configuration.

Swift Package Manager Configuration (Recommended)
If switching to SPM from XCFramework previously integrated, navigate to Upgrading to Swift Package

Manager.

1. Navigate to the Swift package repository and copy the link: https://github.com/vmwareairwatchsdk/iOS-
WorkspaceONE-SDK.

2. Open your Xcode app project that needs to integrate the SDK, go to File > Swift package > Add
package dependency.

3. Xcode will prompt to add a package repository url. Add the url link provided in step 1.

4. Xcode will then prompt to select version requirements: choose version requirements accordingly, and
click Next.

5. Once Xcode clones the repo and resolves the dependency, it prompts to add AWSDK as binary to the
project, click Finish to enter the Xcode targets general section. You should see the SDK being added
under Frameworks, Libraries, and Embedded Content.

6. Navigate to Initialization and Implementation of SDK.

XCFramework Configuration
If you have already gone through the Swift Package Manager Configuration (Recommended), you do not

need to go through this section. Please navigate to Initialization and Implementation of SDK.

If upgrading to XCFramework from SDK 21.2 or prior, navigate to Upgrading to AWSDK.xcframework

1. Unzip the Workspace ONE SDK DMG file.

2. Drag and drop the AWSDK.xcframework and select to add into your Frameworks, Libraries, and
Embedded Content, which is on the General tab of your project settings.
This action automatically adds the AWSDK.xcframework into the Link Binary with Libraries under Build
Phases.

3. In Xcode, select your application’s target and go to Info -> URL Types. Add your callback scheme. Make
sure that URL scheme is unique to your application.

https://github.com/vmwareairwatchsdk/iOS-WorkspaceONE-SDK

Developer Guide

Workspace ONE for iOS (Swift) Page 7 of 82

4. If Application Attestation is to be enabled, keep the Application’s Team identifier handy before
integrating the SDK. Please refer to Application Attestation for more details. Team identifier can be
found in the membership details section in the Apple developer account.

5. Import the Workspace ONE SDK module.

6. Navigate to Initialization and Implementation of SDK.

Initialization and Implementation of SDK
1. Make your AppDelegate conform to the AWControllerDelegate protocol.

import AWSDK

class AppDelegate: UIResponder, UIApplicationDelegate, AWControllerDelegate {

2. In the AppDelegate, add the following code to initialize and start the SDK.

Do not call the start method in applicationWillEnterForeground or applicationDidBecomeActive. These

start methods result in inconsistent UI behavior.

func application(
 _ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions: [UIApplicationLaunchOptionsKey: Any]?
) -> Bool
{

 let awcontroller = AWController.clientInstance()
 awcontroller.callbackScheme = "myCallbackScheme"
 // enable / disable the App Attestation
 awcontroller.shouldAttestApp = true
 // Should provide the team ID if App Attestation is enabled
 awcontroller.teamID = "<Application's Team Id>"
 awcontroller.delegate = self

 awcontroller.start()
 return true
}

https://developer.apple.com/account/#MembershipDetailsCard

Developer Guide

Workspace ONE for iOS (Swift) Page 8 of 82

3. In the AppDelegate, implement the listed method and code to enable the SDK to receive and handle

communication from other Workspace ONE UEM applications.

func application(
 _ application: UIApplication,
 open url: URL,
 options: [UIApplicationOpenURLOptionsKey : Any] = [:]
) -> Bool {

 // `AWController.handleOpenURL` method will reconnect the SDK back to its
 // previous state to continue.
 // If you are handling application specific URL schemes. Please make sure that
 // the URL is not intended for SDK Controller.
 // An example way to perform this.

 let sourceApplication = options[
 UIApplicationOpenURLOptionsKey.sourceApplication] as? String

 let handedBySDKController = AWController.clientInstance().handleOpenURL(
 url, fromApplication: sourceApplication)

 if handedBySDKController {
 AWLogInfo("Handed over open URL to AWController")
 // SDK Controller will continue with the result from Open URL.
 return true
 }

 // Handle if this URL is for the Application.

 return false
}

If the application is using SceneDelegate to manage scenes, implement the listed method and code to

enable the SDK to receive and handle communication from other Workspace ONE UEM applications

func scene(_ scene: UIScene,
 openURLContexts URLContexts: Set<UIOpenURLContext>) {

 // `AWController.handleOpenURL` method will reconnect the SDK back to its
 // previous state to continue.
 // If you are handling application specific URL schemes. Please make sure that
 // the URL is not intended for SDK Controller.
 // An example way to perform this.

 let sourceApplication = context.options.sourceApplication

 let handedBySDKController = AWController.clientInstance().handleOpenURL(
 url, fromApplication: sourceApplication)

 if handedBySDKController {
 AWLogInfo("Handed over open URL to AWController")
 // SDK Controller will continue with the result from Open URL.
 return true
 }

 // Handle if this URL is for the Application.

 return false
}

4. Implement the required delegate method controllerDidFinishInitialCheck.

func controllerDidFinishInitialCheck(error: NSError?) {
 if error != nil {
 AWLogError("Initial Check Done Error: \(error)")
 return
 }
 AWLogInfo("SDK Initial Check Done!")
}

Troubleshooting
In case of errors, check the following.

airWatchApplicationSchemeNotInAllowedLists error code 11.

This error will be passed to the controllerDidFinishInitialCheck delegate method if the wsonesdk scheme

hasn’t been configured. For configuration instructions, see the Configure the Info.plist section.

Developer Guide

Workspace ONE for iOS (Swift) Page 9 of 82

Upgrading to Swift Package Manager
21.9 SDK introduces Swift Package Manager as a way to distribute Workspace ONE mobile SDK. If

upgrading from a prior version that uses XCFramework, removal of existing AWSDK.framework is required

before integration.

1. From the Frameworks, Libraries, and Embedded Content remove AWSDK.xcframework or
AWSDK.framework and AWCMWrapper.framework.

2. Remove StrippingSimulatorSymbols.sh under Build Phases if found.

3. Clean your iOS Application build folder.

4. Begin integration with Workspace ONE mobile SDK Swift Package Manager Configuration
(Recommended).

Upgrading to AWSDK.xcframework
21.3 SDK introduces XCFramework distribution of Workspace ONE mobile SDK. If upgrading from an older

version of SDK, removal of existing AWCMWrapper.framework and AWSDK.framework is required before

integration.

1. From the Frameworks, Libraries, and Embedded Content remove AWCMWrapper.framework and
AWSDK.framework.

2. Remove StrippingSimulatorSymbols.sh under Build Phases.

3. Clean your iOS Application build folder.

4. Begin integration with Workspace ONE mobile SDK XCFramework Configuration.

Developer Guide

Workspace ONE for iOS (Swift) Page 10 of 82

Configure the Info.plist
Register a callback scheme for the Workspace ONE SDK for iOS (Swift) and configure the info.plist file to

receive a callback from the Workspace ONE Intelligent Hub for iOS or Workspace ONE.

If your application uses QR scans and Face ID, add corresponding parameters (

NSCameraUsageDescription and NSFaceIDUsageDescription) and permissions to the info.plist file.

Prerequisites
Initialize the Workspace ONE SDK for iOS (Swift).

Procedure
1. In Xcode, navigate to Supporting Files.

2. Select the Info.plist file for the app.

3. Navigate to the URL Types section. If it does not exist, add it at the Information Property List root node

of the PLIST.

4. Expand the URL Types section and add a URL Schemes entry.

5. Enter the desired callback scheme in the URL Schemes text box.

6. Add all Workspace ONE UEM anchor application schemes to the LSApplicationQueriesSchemes entry.

Item number Type Value

Item 0 String airwatch

Item 1 String AWSSOBroker2

Item 2 String awws1enroll

Item 3 String wsonesdk

Screen Capture: Configuration in the application project plist

7. If this application scans QR codes with the device camera, add permissions for

NSCameraUsageDescription. Provide a description for the application to prompt users to scan with QR

codes.

8. If this application uses Biometric Authentication (FaceID / Touch ID), add permissions for

NSFaceIDUsageDescription. Provide a description for the application to prompt users to turn on Face

ID. If you do not include a description, the iOS system prompts users with native messages that might

not align with the capabilities of the application. The system doesn’t require a comparable usage

description for Touch ID.

9. If the application is using SceneDelegate, disable multiple windows in the plist.

Screen Capture: Configuration in the application project plist.

Developer Guide

Workspace ONE for iOS (Swift) Page 11 of 82

Required and Optional AWController Delegate Callback Methods
Ensure that you added the required initial-check method during initialization and use optional delegate

callback methods that are part of the AWController.

Required AWController Delegate Methods
controllerDidFinishInitialCheck(error: NSError?)

Called once the SDK finishes its setup.

Optional AWController Delegate Methods
controllerDidReceive(profiles: [Profile])

Called when the configurations profiles are received from the management console. The AWController

instance or delegate can now access the configuration profiles.

controllerDidWipeCurrentUserData()

Called when the SDK has wiped all of its data. The application wipes any of its application specific data.

controllerDidLockDataAccess()

Called when the SDK has locked, user will need to unlock with username/password, passcode, touch-id in

order to access application.

controllerDidUnlockDataAccess()

Called when the SDK has been unlocked by some form of acceptable authentication (username/password,

passcode, touch-id).

applicationShouldStopNetworkActivity(reason: AWSDK.NetworkActivityStatus)
Called to alert the application to stop its network activity due to some restriction set by the admin’s

policies such as cellular data connection disabled while roaming, if airplane mode is switched on, SSID does

not match what is on console, proxy failed, etc.

applicationCanResumeNetworkActivity()

Called to alert the application to resume its network activity because it is now fine to do so based on the

device’s current connectivity status and policies set by administrator.

controllerDidDetectUserChange()
Called when the currently logged in user has changed to alert the application of the change.

controllerDidReceive(enrollmentStatus: AWSDK.EnrollmentStatus)

Called when the SDK has received the enrollment status of this device from console. The application can

now query the SDK for the enrollment status using the DeviceInformationController class after this

point or use the enrollmentStatus parameter given in this delegate call.

controllerWillStartRefresh()

Called when the SDK refresh is going to take place. After this application must ensure

AWControllerDelegate receives the controllerDidFinishInitialCheck(error: NSError?) callback with no errors

before they call any other SDK methods.

Developer Guide

Workspace ONE for iOS (Swift) Page 12 of 82

Keychain Access Group Entitlements
Decide whether to enable or disable keychain sharing depending on what behavior you want to use in the

app. If you enable sharing, use the correct format so the system signs the app with the entitlement and so

apps can share data.

Enable Keychain Sharing for SDK-Built Applications
Enable keychain sharing for SDK-built applications that already share the same ‘AppIdentifierPrefix’ and the

same keychain access group so these apps can share data.

Procedure
1. In Xcode, select your application’s target and go to Capabilities.

2. Go to Keychain Sharing and turn it on.

3. Select the plus icon (+) and name the group as awsdk.

4. Drag the new access group to the top of the Keychain Groups list.

The following screen capture shows an example configuration.

Screen Capture: Configuration in the application project

Things to consider while setting up Keychain Groups
1. Do not delete awsdk keychain group.

2. Do not change order of keychain group, awsdk should be on top in the keychain group list.

3. Do not use awsdk keychain group in your app, It should be exclusively used by SDK.

Format of Entitlements
Once keychain sharing entitlement has been enabled and keychain access groups are added to the list of

groups (see figure shown above), the keychain sharing access group that application can specify in the

keychain query to store the entry in keychain is of the form (AppIdentifierPrefix).

(KeychainAccessGroupName). The table below shows examples. If the apps do not specify any keychain

access group in the keychain query, the topmost item in the list is picked.

For information on keychain items and sharing on the Apple Developer site article Sharing Access to

Keychain Items Among a Collection of Apps as of December of 2018.

Keychain sharing enabled Keychain Access Group

Yes FZJQX8D5U8.awsdk

FZJQX8D5U8.com.yourKeychainGroupName

No (System uses Bundle ID as the keychain access group for keychain entry)

FZJQX8D5U8.com.YourCompany.demo

Tips to Troubleshoot Keychain Enablement
Keychain sharing does not work if:

1. keychain sharing entitlement is not enabled

https://developer.apple.com/documentation/security/keychain_services/keychain_items/sharing_access_to_keychain_items_among_a_collection_of_apps

Developer Guide

Workspace ONE for iOS (Swift) Page 13 of 82

2. Keychain sharing entitlement is enabled but Apps do not have the same AppIdentifier prefix

Disabled Keychain Sharing
If keychain sharing is not enabled, the WS1 SDK App will not be able to share information among other

apps build with using WS1 SDK and each app will form its own cluster. This means each app will have a

different authentication sessions (different passcodes if applicable). Apps will also not be able share SSO

and SDK related information with other apps built with WS1 SDK.

Different AppIdentifierPrefix
Problem - Applications in a keychain access group cannot share passcodes or data if they have different

prefixes. The system treats the different prefixes as separate clusters.

Solution - Edit the prefixes for applicable applications on the Apple Developer portal. However, before you

change prefixes, ensure you do not need the data stored with the older prefix. This older data is lost when

the prefix changes. Different Keychain Access Groups

Problem - Applications with the same prefix cannot share passcodes or data if they are in different

keychain access groups. The system treats the different groups as separate clusters.

Solution - Ensure that the applicable keychain access groups have enabled keychain sharing. Merging

applications from different groups that use the same account and service names can result in data

collisions. Check for the listed situations to prevent collisions.

The kSecAttrAccessGroup attribute is one of the required attribute that can uniquely identify the item
stored or retrieved from the keychain.

All other attributes, for example kSecAttrAccount and kSecAttrService, that uniquely identify the item
stored and retrieved are the same.

The kSecAttrAccessGroup attribute is not specified in the actual query to store and retrieve from the
keychain.

More Information
See Apple documentation for more information on entitlements and keychains at the listed sites (as of

March 2018).

Technical Note TN2415 Entitlements Troubleshooting

Keychain Services guide

https://developer.apple.com/library/content/technotes/tn2415/_index.html
https://developer.apple.com/library/content/documentation/Security/Conceptual/keychainServConcepts/02concepts/concepts.html

Developer Guide

Workspace ONE for iOS (Swift) Page 14 of 82

Cluster Session Management and Reduced Flip Behavior for SSO
An application built with Swift that uses the SDK does only flips to retrieve account information. It does not

flip to the anchor application to retrieve data, like environment information, and to lock and unlock

operations.

In the Workspace ONE SDK for iOS (Objective-C), applications needed to flip to the anchor application to

retrieve environment information, account details, and to perform all lock and unlock operations.

Cluster Session Management Explanation
The Workspace ONE SDK for iOS (Swift) includes a mechanism that uses the shared keychain for SDK

apps to communicate with other SDK apps on the device. This approach provides benefits from both

security and user experience perspectives.

SDK applications built by the same developer account and that are also in the same keychain group or

“cluster” can now share an app passcode and an SSO session without requiring a flip to the Workspace

ONE Intelligent Hub, Container, or Workspace ONE every time authentication is required.

However, applications on the same device built by different keychain groups cannot take advantage of this

passcode sharing capability. There are some scenarios that still require a flip to the Workspace ONE

Intelligent Hub or anchor app to obtain the server URL and other setup information. This particular flip

should only occur once per cluster of applications.

Developer Guide

Workspace ONE for iOS (Swift) Page 15 of 82

SDK settings property list and bundle
The SDK settings property list is used to activate and deactivate Workspace ONE features in your

application. You create the property list in an iOS bundle in your application.

Create the SDK settings property list and bundle
Proceed as follows.

1. Open your app project in Xcode.

2. Create a Settings Bundle named AWSDKDefaults.bundle.

AWSDKDefaults.bundle can be created either in the application or it can be included in a framework /

package that is consumed by the application.

One way to do this is as follows.

1. In the Xcode navigator, select the project.

The project will be at the top of the navigator.

2. In the Xcode menu, select File, New, File…

This opens a template selection interaction.

3. Select the template: Settings Bundle.

The template can appear in the Resource category. You can also search for it by filtering, for example

for “bundle”.

Select the plain Settings Bundle template, not the WatchKit Settings Bundle template.

4. Click Next. A file save dialog will open.

5. Enter the name AWSDKDefaults.bundle and select to save in the root of your project.

The new bundle will be added to the resources that are copied into the app. You can check this in the

target build phases, in the Copy Bundle Resources list. If it doesn’t appear there, add it now by clicking

the plus.

3. Create a property list named AWSDKDefaultSettings.plist in the bundle.

One way to do this is as follows.

1. In the Xcode navigator, select the project.

The project will be at the top of the navigator.

2. In the Xcode menu, select File, New, File…

This opens a template selection interaction.

3. Select the template: Property List.

The template can appear in the Resource category. You can also search for it by filtering, for example

for “property”.

4. Click Next. A file save dialog will open.

5. Enter the name AWSDKDefaultSettings.plist and select to save in the AWSDKDefaults.bundle
group.

The new property list file will be added to the bundle.

If you save the property list somewhere else by mistake, you can drag and drop it into the bundle to fix

it.

Developer Guide

Workspace ONE for iOS (Swift) Page 16 of 82

Add the required entries to the property list
Some features of Workspace ONE for iOS are activated or configured by entries in the

AWSDKDefaultSettings.plist file. See the following sections in this document for more information.

SDK Payloads Reference, Code and Console for a list of features. Note that some features also require

configuration in the Workspace ONE UEM management console.

Branding for how to configure the images and colors in the SDK user interface.

Developer Guide

Workspace ONE for iOS (Swift) Page 17 of 82

Test the SDK-Built App
Test the integration of your application with the Workspace ONE SDK for iOS (Swift), including the delivery

of profiles from the Workspace ONE UEM console to your application. Initialize the SDK in your application

to set communication with the Workspace ONE UEM server and to test the application.

Procedure
1. Enroll your test devices to the Workspace ONE UEM console to enable communication between them.
The SDK does not currently support testing in a simulator.

2. Upload the SDK-built app or a placeholder application that has the same bundle ID as the testing
application.
1. Create an empty application with the bundle ID of the testing-application to identify the application.

2. Upload the empty application to the console and assign a default or custom SDK profile to it.

3. Assign an SDK profile to the application.
If you do not assign a profile, the SDK does not initialize correctly.
This step enables the console to send commands to the application with the record.

4. Push the application to test devices. Save the application and assign it using the flexible deployment
feature.
Use devices for testing that are Workspace ONE UEM managed devices. You do not have to repush the
application every time you make a change. Flexible deployment rules push the application to test
devices with the app catalog.

5. Run your application in Xcode.

Results
The console pushes the initialization data to the application when the application installs on test devices.

What to do next
After the application initializes, you can run the application as many times as you want to debug it.

Developer Guide

Workspace ONE for iOS (Swift) Page 18 of 82

Delete Workspace ONE SDK Data
Use the func destroyContainerData() method in the class WS1SDKContainerCleaner to delete

Workspace ONE SDK data from your Workspace ONE SDK-built app and other apps that share the iOS

keychain with it.

Important: You cannot recover data deleted by this method.

After deletion of WS1SDK data, this method will also restart WS1SDK if it was successfully initialized prior

calling to this method (i.e the delegate callback func controllerDidFinishInitialCheck(error: NSError?) had

been called with error as nil) OR the setup was in progress when this method was called (i.e func

controllerDidFinishInitialCheck(error: NSError?) had not been called yet on the AWControllerDelegate)

It will not restart the WS1SDK if prior calling to this method WS1SDK failed to initialze OR WS1SDK was

not started.

Quit and relaunch of other SDK-build apps which share the iOS keychain with the SDK-built app is

recommended to avoid undefined behavior.

Method Usage

let ws1SDKDataCleaner = WS1SDKContainerCleaner()
ws1SDKDataCleaner.destroyContainerData()

Developer Guide

Workspace ONE for iOS (Swift) Page 19 of 82

SDK Stored Certificate Information
To troubleshoot your SDK-built application, use an AWController API to find and display the Workspace

ONE SDK stored certificate information. The API supports numerous certificate types and certificate

attributes to query.

API Example
Note: Calling this API without waiting until the SDK calls initialcheckDone(_:) always fails with the error

InvalidOperation.ContainerLocked.

AWController.clientInstance().retrieveStoredPublicCertificates { (certificateMap, error) in
 if let integratedAuthCert = certificateMap[CertificateUsageKey.identity].first {
 let issuer: String? = integratedAuthCert.value(
 forCertificateAttribute: CertificateInfoKey.issuer)
 let certOCSPRespondersList: [String]? = integratedAuthCert.value(
 forCertificateAttribute: CertificateInfoKey.ocspResponderList)

 // ...

 }

 if let magCert = certificateMap[CertificateUsageKey.magSigning].first {
 let validFrom: Date? = magCert.value(
 forCertificateAttribute: CertificateInfoKey.startDate)
 let validUntil: Date? = magCert.value(
 forCertificateAttribute: CertificateInfoKey.endDate)

 // ...
 }
}

Supported Certificate Types
@objc(AWCertificateUsageKey)
public class CertificateUsageKey: NSObject {

 /// Certificate of Usage key to reflect Integrated Authentication
 public static let integratedAuthIdentity: String

 /// Certificate of Usage key to reflect Integrated Authentication
 public static let uncategorizedIdentity: String

 /// Certificate of this usage are used for signing requests for MAG Proxy
 public static let magSigning: String

 /// Certificate of this usage are used for signing requests for Tunnel Proxy
 public static let tunnelSigning: String

 ///Certificates of type SSL
 public static let selfSignedSSLCerts: String

 ///Certificates of type Custom Anchors
 public static let customTrustedAnchorCerts: String

 /// SDK doesn't have specific usage for this type of certificates
 public static let others: String
}

Supported Certificate Attributes to Query

Developer Guide

Workspace ONE for iOS (Swift) Page 20 of 82

///
/// Use these strings as keys for retrieving attributes and raw data of certificates
/// from AWController.storedCertificates() API
@objc(AWCertificateInfoKey)
public class CertificateInfoKey: NSObject {
 /// Raw Certificate data in DER format
 public static let rawCertificate: String = "exportCertificateData"
 /// Return type of value - String?
 public static let subjectName: String = "subjectName"
 /// Return type of value - String?
 public static let subjectUserID: String = "subjectUserID"
 /// Return type of value - String?
 public static let subjectIdentifier: String = "subjectIdentifier"
 /// Return type of value - String?
 public static let emailAddress: String = "emailAddress"
 /// Return type of value - Data?
 public static let serialNumber: String = "serialNumber"
 /// Return type of value - String?
 public static let commonName: String = "commonName"
 /// Return type of value - String?
 public static let issuer: String = "issuer"
 /// Return type of value - String?
 public static let algorithm: String = "algorithm"
 /// Return type of value - Date?
 public static let startDate: String = "startDate"
 /// Return type of value - Date?
 public static let endDate: String = "endDate"
 /// Return type of value - String?
 public static let subjectAlternativeName: String = "subjectAlternativeName"
 /// Return type of value - String?
 public static let keyUsage: String = "keyUsage"
 /// Return type of value - String?
 public static let extendedKeyUsage: String = "extendedKeyUsage"
 /// Return type of value - String?
 public static let universalPrincipalName: String = "universalPrincipalName"
 /// Return type of value - [String]?
 public static let ocspResponderList: String = "ocspResponderList"

}

Developer Guide

Workspace ONE for iOS (Swift) Page 21 of 82

API to Retrieve Identity Certificates
The Workspace ONE SDK for iOS (Swift) provides an API to retrieve all stored identities fetched from the

Workspace ONE UEM console so that SDK-built apps can access resources secured with certificates.

The admin configures trusted certificates as Credentials in the SDK profile. When the SDK fetches the SDK

profile, it also fetches and stores the CA certificates.

API to Retrieve Identity Certificates

exportIdentityCertificates(completion: @escaping IdentityCertficatesCompletionHandler)

Discussion
Use this API to retrieve all SDK stored identity certificates along with passwords. Call this API after the SDK

initialises to get the latest set of stored certificates. All valid PKCS #12 along with their passwords are

returned. This API ensures the returned certificates are valid at the time of call.

The completion handler is not called on Main Thread.

Parameter Explanations
The completion handler takes the listed parameters.

The parameter completion is a block to execute after certificate retrieval completes.

((
 _ pkcs12CertificateMap: [String: [PKCS12Certificate]]?, _ error: NSError?
) -> Void)

The pkcs12CertificateMap parameter is a dictionary with an array of PKCS stored in the SDK.

Expect the map with keys from CertificateUsageKey.integratedAuthIdentity and

CertificateUsageKey.uncategorizedIdentity. The map is empty in case there is no stored certificate in the

SDK.

The parameter error is an error object that returns one of two values; why the SDK failed to return

certificates or nil if the request was successful.

For the listed scenarios, the completion handler returns the listed maps and errors.

If there are no certificates stored, then the handler returns an empty map and a nil error.

If there are valid and expired certificates in storage, then the handler returns a map that contains valid
certificates and a nil error.

If an error occurs, then the map is nil and the error indicates why the SDK failed to return certificates.

If stored certificates are valid, then the map is not empty and the hadler returns a nil error.

Protocol Example for P12/PKCS #12 Certificate Data
public protocol PKCS12Certificate {
 var data: Data { get }
 var importExportPassphrase : String { get }
}

Issues with P12 Passwords that Use Cipher 98 rc2–40-cbc
The API rotates the P12 password to a random string so that the SDK does not give the actual password

to the app. If any stored P12 password use the cipher 98 rc2–40-cbc (which is not FIPS compliant), the

SDK exports that P12 password to a FIPS compliant cipher and returns it with an updated password.

However, if the API must export and update the password, it does not return the applicable certificate.

Developer Guide

Workspace ONE for iOS (Swift) Page 22 of 82

SDK Payloads Reference, Code and Console
Some features, also called payloads, require extra code in the application, entries in config files, and

settings in the console to work. Others only require, extra code, config entries, or a console setting.

SDK Payloads
Table 1. Workspace ONE SDK for iOS (Swift) Payloads and Needed Configurations

SDK Capability

Add Code or Config Entries (Beyond

AWController) Set in the Console

Force Token For

App

Authentication

No Yes

Enable

This setting controls how the system allows users

to access SDK-built applications, either initially or

through a forgot- passcode procedure. When

enabled, the system forces the user to generate

an application token through the Self- Service

Portal (SSP) and does not allow user name and

password.

Authentication Yes Yes

Enable

Set a type.

SSO Yes

Enable keychain sharing.

Yes

Enable

Integrated

authentication

Yes

Use the challenge handler.

Yes

Enable

Enter allowed sites.

Set an authentication option.

App tunnel proxy No Yes

Enable

Select a mode.

Configure the proxy components of the
VMware Tunnel.

If not using VMware Tunnel, ensure the
integration of the selected proxy with your
Workspace ONE UEM deployment.

Data loss

prevention (DLP)

Yes

Set the AWSDKDefault bundle and the
AWSDKDefaultSettings.plist.

To use the third-party keyboards feature,
implement the
shouldAllowExtensionPointIdentifier API in the
UIApplicationDelegate.

Yes

Enable

Set the supported restriction.

Analytics Yes

Set the AWDataSampler.

Set the AnalyticsHelper.

Decide to use the SDK or the Workspace ONE
Intelligent Hub for telecom data.

Yes

Enable

If the setting is Do Not Disturb, set privacy.

Branding Yes Yes

Developer Guide

Workspace ONE for iOS (Swift) Page 23 of 82

SDK Capability

Add Code or Config Entries (Beyond

AWController) Set in the Console

Add values to the AWSDKDefaultSettings.plist. Enable

Set colors.

Upload images.

Sample data and

MDM information

Yes

Use the beacon.
The SDK sends the beacon but you can

manually send the beacon when desired.

Query the DeviceInformationController singleton
class.

No

Compromised

protection

No

Use code to check the status of devices with the

application.

Yes

Enable

Dynamic

Compromise

Detection

No

Have the app consume the supported SDK

version.

No

Ensure that devices can access specified URLs for

rule updates.

Custom settings Yes

Use the AWCustomPayload object.

Yes

Enable

Enter code.

Geofencing Yes

Implement region monitoring. See the Apple

developer website for details, for example:

Monitoring the User's Proximity to Geographic

Regions.

Yes

Enable

Set the area.

Logging Yes

Add APIs for logging. See the sample applications

for examples.

Yes

Enable

Set the level.

Set wi-fi.

Offline access No Yes

Enable

Set time allowed to be offline.

Encryption Yes

Use methods in the AWController to encrypt and

decrypt data.

No

However, the strength of the encryption depends

on the authentication method set in the

Workspace ONE UEM console.

SDK App

Compliance >

Application

Version

No

Use the latest SDK frameworks.

Yes

Enable

Add the application identifier.

Select an operator.

Enter the applicable application version.

The console blocks non-compliant devices.

SDK App

Compliance >OS

Version

No

Use the latest SDK frameworks.

Yes

Enable

Select an operator.

https://developer.apple.com/documentation/corelocation/monitoring_the_user_s_proximity_to_geographic_regions

Developer Guide

Workspace ONE for iOS (Swift) Page 24 of 82

SDK Capability

Add Code or Config Entries (Beyond

AWController) Set in the Console

Select the OS version.

Select an action. The console supports the block
and wipe actions.

Apple Push

Notifications

Yes

Add methods to AppDelegate.swift.

Yes

Enable APNs in the app.

Upload the production APNs certificates.

Certificates and

Credentials

Payloads

Yes

Use APIs to fetch certificates, authenticate, and

validate the server trust.

Yes

Admin configures and adds certificates to the

console with an SDK profile.

Developer Guide

Workspace ONE for iOS (Swift) Page 25 of 82

Authentication Type Payload Description
Set access to your application with the authentication type paload. Use a local passcode, Workspace ONE

UEM credentials, or require no authentication.

Select an authentication type in the Workspace ONE UEM console and use the provided SDK helper

classes in your application.

Setting Description

Passcode Designates a local passcode requirement for the application.

Device users set their passcode on devices at the application level when they

first access the application.

Username and

Password

Requires users to authenticate to the application with their Workspace ONE UEM

credentials.

Disabled Requires no authentication to access the application.

Authentication Type and SSO Setting Behaviors
You can use keychain sharing, the authentication type, and the single sign-on (SSO) option to make access

to your application persistent.

Keychain Access Group Required
You must have a shared space, a keychain access group, so that applications signed in the correct format

can share keychain entries. See Keychain Access Group Entitlements for information on the signing format.

See Tips to Troubleshoot Keychain Enablement for common issues with keychain sharing.

Enable Authentication Type and SSO
If you enable both authentication type and SSO, then users enter either their passcode or credentials

once. They do not have to reenter them until the SSO session ends.

Enable Authentication Type Without SSO
If you enable an authentication type without SSO, then users must enter a separate passcode or

credentials for each individual application.

Developer Guide

Workspace ONE for iOS (Swift) Page 26 of 82

Prerequisites to Use SSO
Workspace ONE UEM allows access to iOS applications with single sign on, however. To use SSO, set

console, application, and anchor application components and query the SSO status.

SSO Components
Enable the SSO setting in the SDK default settings and policies in the Workspace ONE UEM console.

Initialize the SDK in the AppDelegate.

Ensure an anchor application is on devices like the Workspace ONE Intelligent Hub or Workspace ONE.
The anchor application deployment is part of the Workspace ONE UEM mobile device management
system.

Query the Current SSO Status
To query the SSO status of the iOS application, wait for the controllerDidFinishInitialCheck method to

finish. Look in the DeviceInformationController class for the ssoStatus property. If the

controllerDidFinishInitialCheck method is not finished, the SSO status returns as SSO disabled.

SSO Configurations and System Login Behavior for iOS Applications
Workspace ONE UEM allows access to iOS applications with single sign on enabled in two phases.

Workspace ONE UEM checks the identity of the application user and then it secures access to the

application.

Application Access With SSO Enabled
The authentication process to an application with Workspace ONE UEM SSO enabled includes two phases:

accessing the app and securing persistent access.

1. Identify user for app access - The first phase ensures that the user’s credentials are valid. The system
identifies the user first by silent login. If the silent login process fails, then the system uses a configured,
authentication system. Workspace ONE UEM supports username and password, token, and SAML.

2. Secure persistent app access - The second phase grants the user access to the application and keeps
the session live with a recurring authentication process. Workspace ONE UEM supports passcode,
username and password, and no authentication (disabled).

Authentication Behavior By SSO Configuration
The SSO configuration controls the login behavior users experience when they access applications. The

authentication setting and the SSO setting affect the experience of accessing the application.

Developer Guide

Workspace ONE for iOS (Swift) Page 27 of 82

Table 1. Login Behavior for Users when Passcode is Set for SSO

Authentication

Phase SSO Enabled SSO Disabled

Identify Silent login: The system registers
credentials with the managed token for
MDM.
If silent login fails, the system moves to

the next identification process.

Authenticate: The system identifies
credentials against a common
authentication system (username and
password, token, and SAML).

Silent login: The system registers
credentials with the managed token for
MDM.
If silent login fails, the system moves to

the next identification process.

Authenticate: The system identifies
credentials against a common
authentication system (username and
password, token, and SAML).

Secure Prompt if passcode exists: The system
does not prompt for the passcode if
the session instance is live.

Prompt if passcode does not exist: The
system prompts users to create a
passcode.

Session shared: The system shares the
session instance across applications
configured with Workspace ONE UEM
SSO enabled.

Prompt if passcode exists: The system
prompts users the application
passcodes.

Prompt if passcode does not exist: The
system prompts users to create a
passcode.

Session not shared: The system does
not share the session or the passcode
with other applications.

Table 2. Login Behavior for Users when Username and Password is Set for SSO

Authentication

Phase SSO Enabled SSO Disabled

Identify Silent login: The system registers credentials
with the managed token for MDM.
If silent login fails, the system moves to the

next identification process.

Authenticate: The system identifies
credentials against a common authentication
system (username and password, token,
and SAML).

Silent login: The system registers
credentials with the managed
token for MDM.
If silent login fails, the system

moves to the next identification

process.

Authenticate: The system prompts
for application login credentials.

Secure Prompt: The system does not prompt for
the login credentials if the session instance
is live.

Session shared: The system shares the
session instance across applications
configured with Workspace ONE UEM SSO
enabled.

Prompt: The system prompts for
the login credentials for the
application on every access
attempt.

Session not shared: The system
does not share the session with
other applications.

Developer Guide

Workspace ONE for iOS (Swift) Page 28 of 82

Table 3. Login Behavior for Users when Disabled is Set for SSO

Authentication

phase SSO enabled SSO disabled

Identify Silent login: The system registers credentials
with the managed token for MDM.
If silent login fails, the system moves to the

next identification process.

Authenticate: The system identifies credentials
against a common authentication system
(username and password, token, and SAML).

Silent login: The system
registers credentials with the
managed token for MDM.
If silent login fails, the system

moves to the next identification

process.

Authenticate: The system
prompts for application login
credentials.

Secure Prompt: The system does not prompt users for

authentication.

Prompt: The system does not

prompt users for authentication.

Integrated Authentication and the Challenge Handler

Use integrated authentication to pass single sign on (SSO) credentials or certificates to authenticate to

web sites like content repositories and wikis. Set the payload in the Workspace ONE UEM console and add

a list of allowed sites. Then use the challenge handler in your application to handle incoming authentication

challenges.

Challenge Handler Methods for Challenges
Find the challenge handler in the AWController class of the SDK. Inside the AWController, use the listed

methods to handle an incoming authentication challenge for connections made with NSURLConnection and

NSURLSession.

Developer Guide

Workspace ONE for iOS (Swift) Page 29 of 82

Table 1. Descriptions of Challenge Methods

Method Description

func canHandle(
 _ protectionSpace: URLProtectionSpace,
 withError error: Error?
) -> Bool

Checks that the Workspace ONE SDKcan handle this type of

authentication challenge. The SDK makes several checks to

determine that it can handle challenges.
1. Is the Web site challenging for authentication on the list of
allowed sites in the SDK profile?

2. Is the challenge one of the supported types?
Basic

NTLM

Client certificate

3. Does the SDK have a set of credentials to respond?
Certificate

User name and password

If all three of the criteria are met, then this method returns

YES.

The SDK does not handle server trust, so your application

must handle NSURLAuthenticationMethodServerTrust.

func handleChallenge(
 forURLSessionChallenge challenge:
 URLAuthenticationChallenge,
 completionHandler: @escaping (
 _ disposition:
 URLSession.AuthChallengeDisposition,
 _ credential: URLCredential
) -> Void
) -> Bool

Responds to the actual authentication challenge from a

network call made using NSURLSession.

This method is the same as the handleChallenge method,

except the system uses this method with calls made with

NSURLSession. This call involves using a completion block to

handle authentication challenges.

Requirements for Integrated Authentication
For integrated authentication to work, communication between the allowed sites and the challenge handler

must use a 401 status code, specific authentication methods, and the correct credentials.

The URL of the requested web site must match an entry in your list of Allowed Sites.

The system must make the network call so that the process provides an NSURLAuthenticationChallenge

object.

The web site must return a 401 status code that requests authentication with one of the listed

authentication methods.

NSURLAuthenticationMethodBasic

NSURLAuthenticationMethodNTLM

NSURLAuthenticationMethodClientCertificate

The challenge handler can only use the enrollment credentials of the user when attempting to

authenticate with a web site. If a web site requires a domain to log in, for example ACME\jdoe, and users

enrolled with a basic user name, like jdoe, then the authentication fails.

If your application uses an embedded web view, you can use the SDK handleChallenge method either

in a URLSession challenge handler, or in a WKWebView challenge handler. If you use handleChallenge in

a URLSession challenge handler, display the response in a UIWebView or WKWebView instance. Note:

The UIWebView has been deprecated as of December 2020 by Apple.

SCEP Support to Retrieve Certificates for Integrated Authentication

-

-

-

Developer Guide

Workspace ONE for iOS (Swift) Page 30 of 82

The Workspace ONE SDK supports the SCEP protocol, with limitations, to retrieve certificates for

integrated authentication. To use SCEP certificates for your SDK-built application, ensure integrated

authentication is enabled and that SCEP is configured in the console as a certificate authority.

Note: Workspace ONE SDK requires a challenge within Certificate Signing Request(CSR) to block

unauthenticated authorization requests.

Supported SAN Information Types
The SDK fully supports the listed Subject Alternative Names (SAN) information types in certificate

attributes.

dNSName

ntPrincipalName
Note: When you configure this information type, it displays as an entry nested under the otherName
attribute. Although otherName is not supported, ntPrincipalName is supported even as a nested entry of
otherName.

rfc822Name

uniformResourceIdentifier

Supported with Correct Format
The Workspace ONE SDK supports the listed SAN information types but you must use the correct format

or the SDK ignores them.

iPAddress

registeredID

Not Supported
The Workspace ONE SDK does not support the listed SAN information types. If you configure them, the

SCEP process fails.

Custom

directoryName

ediPartyName

otherName

x400Address

Developer Guide

Workspace ONE for iOS (Swift) Page 31 of 82

Methods for a Pending Status from the SCEP Certificate Authority
Use the AWController method to modify SCEP certificate fetches to account for when the SCEP

certificate authority returns a pending status for the fetch.

Pending Status of Certificate Fetches
Some configurations set the SCEP certificate authority to not issue the certificate until a request is

approved. In this scenario, the authority returns a pending status to the SDK. You can use the methods in

AWController to configure the retry logic and monitor the retry progress.

Ensure the Certificate Authority Server Handles Retry Requests
The Workspace ONE SDK retries the fetch request based on the parameters in the modified code or using

the default behavior (retries every 5 milliseconds for 10 tries). If a certificate authority server is not

configured to handle retry requests caused by the pending status, the fetch never completes.

Methods for Pending Status
Use the AWController to modify the retry timeout and maximum number of retry attempts when fetching

SCEP certificates. Also, use the SDK delegate method to notify the SDK-built application on the progress

of the pending SCEP certificate fetch.

Table 1. Pending Status Methods

Configuration Code Examples

Modify the retry

timeout and

maximum number of

retry attempts.

Modify the AWController.

public func setPendingCertificateRetry(timeout: Double, maxAttempts: Int) -> Bool

Here is an example of code modifications that set the timeout value to 10

seconds and the maximum number of retry attempts to 8.

let success = AWController.clientInstance.setPendingCertificateRetry(
 timeout: 10.0, maxAttempts: 8)

Note: If you do not configure the timeout and retry attempts, then the timeout

value defaults to 5 milliseconds and the maximum number of retry attempts

defaults to 10.

Use the delegate

method for pending

status notifications.

Use a delegate method to notify about the pending status of the fetch.

@objc(didFinishPollingForPendingCertificateIssued:error:)
optional public func controllerDidFinishPollingForPendingCertificate(
 certificateIssued: Bool,
 error: NSError?
)

Here is an example of the delegate method for notification.

func controllerDidFinishPollingForPendingCertificate(
 certificateIssued: Bool, error: NSError?
) {
 // Application logic goes here
}

Developer Guide

Workspace ONE for iOS (Swift) Page 32 of 82

Table 2. Error Codes for Pending Status

Error Code Description

certificateIssuancePending The certificate is pending.

retryIntervalNotReached The timeout is not reached for retry. You can set in

setPendingCertificateRetry.

maximumAllowedAttemptsEllapsed The maximum attempts have been reached for polling. You can set

it in setPendingCertificateRetry.

Using Persistent Tokens with Integrated Authentication
SDK supports the usage of Persistent Tokens to resolve authentication challenges with

NSURLAuthenticationMethodClientCertificate authentication method. Applications can use the existing SDK

API to handle certificate Challenge. Currently SDK supports using PIV-D application as the Persistent Token

Provider. The support is from iOS 14 or later.

 func handleChallenge(forURLSessionChallenge challenge: URLAuthenticationChallenge,
 completionHandler: @escaping (disposition: URLSession.AuthChallengeDisposition,
 credential: URLCredential)
)

Setting up the Application to utilise Persistent Tokens
1. Add “com.apple.token” in keychain sharing groups.

Screen Capture: Adding an entry into keychain sharin groups

2. Please Cross check the keychain access group in the Entitlements file. If it is showing

$(AppIdentifierPrefix)com.apple.token as shown below, please remove $(AppIdentifierPrefix) from the

keychain access group .

Screen Capture: Cross verification in entitlements file

3. After the correction, Entitlements file should look like this.

Screen Capture: Correction in entitlements file

UEM configuration to enable Persistent Token support
UEM adminstrator can enable this feature with the help of Custom Setting.

Developer Guide

Workspace ONE for iOS (Swift) Page 33 of 82

{
 "CustomSDKSettings": {
 "PersistentTokenConsumption": {
 "Allowed": true,
 "RestrictedToProviders": ["com.air-watch.pivd.pivdtoken"]
 }
 }
}

Developer Guide

Workspace ONE for iOS (Swift) Page 34 of 82

Changes to Active Directory Passwords
Use an API to update the Workspace ONE SDK for iOS (Swift) credentials when there are Active Directory

password changes..

If an Active Directory (AD) password changes and becomes out of sync with the object account of the

SDK, use an API to update the SDK credentials. An example for using this API is for situations where the

password changed for access to sites controlled by integrated authentication configurations.

AWController.clientInstance().updateUserCredentials(with: { (success, error) in
 ///insert completion handler code here
})

Find the new credentials in the SDK account object after the callback successfully returns.

Developer Guide

Workspace ONE for iOS (Swift) Page 35 of 82

Configure VMware Tunnel for App Tunneling
The VMware Workspace ONE Tunnel provides several secure methods for individual applications that use

the VMware Workspace ONE SDK to access corporate resources. Select from two options, VMware

Tunnel and VMware Tunnel - Proxy.

VMware Tunnel: The Workspace ONE SDK for iOS (Swift) provides app tunneling without adding code to
the application. However, you need to configure app tunneling in the Workspace ONE UEM console. This
option is the preferred Tunnel.

VMware Tunnel - Proxy: The Tunnel-Proxy component uses HTTPS tunneling to use a single port to filter
traffic through an encrypted HTTPS tunnel for connecting to internal sites such as SharePoint or a wiki.
The Workspace ONE SDK for iOS (Swift) provides app tunneling without adding code to the application.
However, you need to configure app tunneling in the Workspace ONE UEM console.

Note: If users access an internal resource through a non-standard port (a port that is not port 80 or 443),

you must explicitly list the port number in the URL you enter in App Tunnel URLs. For example, if the

resource URL is data.company.com and it is accessed through port 7777, you must add

data.company.com:7777 in the App Tunnel URLs field.

Prerequisites
You must have a valid Tunnel deployment. Access VMware Tunnel on Windows or VMware Tunnel on Linux

for details.

Procedure
1. Navigate to Groups & Settings > All Settings > Settings & Policies > Security Policies > AirWatch App
Tunnel.

2. Enable the setting.

3. Select an app tunnel mode, either VMware Tunnel - Proxy or VMware Tunnel.

4. In the App Tunnel URLs field, enter the URLs that you do not want to tunnel.
Enter no URLs and every URL goes through the VMware Tunnel.

Enter one or more URLs and the system splits the traffic. This configures split tunneling. The system
does not send the URLs entered in this field through the VMware Tunnel. The system does send all
other URLs through t he VMware Tunnel.

App Tunneling Known Limitations and Other Considerations
Due to platform and other technical limitations, only network traffic made from certain network classes can

tunnel.

Table 1. Supported Network Classes

Network Class Supported

NSURLSession Calls made using NSURLSession tunnel only on iOS 8+ devices and depending on the

configuration used. Default and ephemeral configuration types tunnel. However,

background configuration types do not tunnel.

CFNetwork Most calls made using CFNetwork tunnel except for CFSocketStream, which does not

tunnel.

Table 2. Network Classes Not Supported

Network Class Not Supported

URLs that

contain .local

Requests with URLs containing .local do not tunnel. Various Apple services on the

device use this .local string pattern. The SDK does not tunnel these requests through

the VMware Tunnel to avoid interfering with these services.

WKWebView Requests made with WKWebView supports tunnel only from iOS 17

-

-

Developer Guide

Workspace ONE for iOS (Swift) Page 36 of 82

Behavior of Copy and Paste for SDK-Built Applications

The copy and paste payloads, Enable Copy and Paste Out and Enable Copy and Paste Into, restrict actions

when set to No. They allow actions when set to Yes.

Enable Copy and Paste Out - When you set Enable Copy and Paste Out to No, you can only paste
copied data from your SDK-built application out to other SDK-built applications.

Enable Copy and Paste Into - When you set Enable Copy and Paste Into to No, you can only paste
copied data from other SDK-built applications into your SDK-built application.

Limits of DLP Copy and Paste

The copy and paste payloads for the Workspace ONE SDK for iOS (Swift) are limited by parameters, out

of process classes, SSO and DLP configurations, and keychain groups. There are specific limitations with

certain UI classes.

WKWebView

You cannot copy images in DOC and PDF files loaded in WKWebView due to a technical limitation.

Copy/Paste does not work in web applications like Microsoft Word/Excel etc.

Out of Process Classes - The Workspace ONE SDK does not support copy-out and copy-in restrictions

in views that are out of process. For example, the feature does not work in the listed views, and this list

is not exhaustive.

SFSafariViewController

UIDocumentInteractionViewController

QLPreviewController

Other Limitations

Two sets of SDK-built applications that have different SSO settings (for example, one is set with SSO
on and another with SSO off) cannot share the pasteboard.

You cannot copy from an application which has no restriction (Enable Copy and Paste Out set to Yes)
and paste that content into a restricted application (Enable Copy and Paste Into set to No).

You cannot share a pasteboard between two or more sets of applications that are in different
keychain groups.
For example, VMware Workspace ONE productivity applications and custom SDK-built applications
cannot share the clipboard. However, multiple custom SDK-built applications from the same developer
that are in the same keychain group can share the clipboard.

-

-

-

-

-

-

-

-

Developer Guide

Workspace ONE for iOS (Swift) Page 37 of 82

Set Up the Bundle and PLIST for Copy and Paste
To control the copy and paste interaction between your SDK-built applications and non-SDK-built

applications, create a bundle and PLIST file, locally, and set the keys and values.

For details on creating the bundle and PLIST during initial setup, see SDK settings property list and bundle.

Procedure
1. Create a bundle named AWSDKDefaults if you did not create it during initial setup.

2. Create a PLIST named AWSDKDefaultSettings.plist and put it in the AWSDKDefaults bundle if you did
not do this during initial setup.

3. In the PLIST, create a Boolean named AWClipboardEnabled and set it to YES.

Screen Capture: Configuration for Copy and Paste in the application project

Results
After you add the local flag, and your admin sets the default or custom SDK policies for these features in

the console, the SDK enforces the restriction. It enforces it across your application’s user interfaces that

use cut, copy, and paste in the listed classes and subclasses.

UITextField

UITextView

WKWebView

Note that the restriction isn’t enforced in the following classes.

UISearchTextField interactions won’t be restricted.

UISearchBar interactions won’t be restricted.

Developer Guide

Workspace ONE for iOS (Swift) Page 38 of 82

Behavior of the Third-Party Keyboard Restriction
Run the third-party keyboard restriction by starting the AWController and configuring the data loss

prevention setting in the Workspace ONE UEM console. This payload behaves depending on the most

restrictive setting.

Request your Workspace ONE UEM admin to configure the data loss prevention (DLP) menu item. Find the

console settings in Groups & Settings > All Settings > Apps > Settings and Policies > Security Policies >

Data Loss Prevention > Enable Third Party Keyboards.

When this feature is set to No, any third party keyboards used in the application are automatically replaced

with the native system keyboard.

SDK Behaves According to the Most Restrictive Implementation
If your application’s code overrides the shouldAllowExtensionPointIdentifier delegate method, the

Workspace ONE SDK for iOS (Swift) honors the more restrictive implementation.

For example, if the SDK setting allows third party keyboards but your application forcibly returns no to

disallow custom keyboards, then custom keyboards are disallowed in the application. If the SDK setting

does not allow third party keyboards then the third party keyboard is not allowed regardless of your

applications implementation of the method.

Table 1. Third Party Keyboard Restriction Behavior Depends on Console Settings and Code

Data Loss

Prevention

Setting

Enable Third

Party

Keyboard

Setting

Is shouldAllowExtensionPointIdentifier

Implemented in the Application Keyboard Behavior

Disabled NA Implemented Third party keyboards

behave depending on the

implementation of the

delegate method.

Enabled Set to No. Implementation does not matter. Third party keyboards are

not available.

Enabled Set to Yes. Implemented Third party keyboards are

available.

Enabled Set to Yes. Implemented and returns yes. Third party keyboards are

available.

Enabled Set to Yes. Implemented and returns no. Third party keyboards are

not available.

Run the Application to See Expected Behaviors
When the Enable Third Party Keyboard setting is configured in the console, the SDK does not enforce the

restriction until the next time the user runs the application after the application retrieves the new SDK

profile.

Developer Guide

Workspace ONE for iOS (Swift) Page 39 of 82

Use DLP to Control Links to Open in Workspace ONE Web and Workspace ONE
Boxer
Configure applications built with the Workspace ONE SDK to open in the Workspace ONE Web and to

compose emails in Workspace ONE Boxer. This feature enables end users to use alternative systems

other than Safari and the Mail app. To develop this feature, create a bundle in your iOS application and

configure Workspace ONE UEM to enforce the behaviors in the bundle.

Configure both systems, the browser and email systems, for this feature to work. Perform the procedures

in the listed order.

Procedure
1. Initial Set Up of the Bundle and PLIST

Perform these steps before you enable any links. Use this bundle and PLIST for both HTTP/HTTPS links

and MAILTO links.

1. Create a bundle named AWSDKDefaults.

2. Create a PLIST named AWSDKDefaultSettings.plist and put it in the AWSDKDefaults bundle.

2. Enable Links for Workspace ONE Boxer

To enable the application to open MAILTO links in Workspace ONE Boxer, enable a few dictionary and

PLIST flags.

1. Work in the AWSDKDefaults bundle.

2. Create a dictionary named AWMailtoSchemeConfiguration and put it in the
AWSDKDefaultSettings.plist.

3. Configure the AWMailtoSchemeConfiguration dictionary, create a new Boolean entry with the key
name as enabled and set the Boolean value to Yes.
If you set the Boolean value as No, then MAILTO links open in the native mail. If set to Yes, then your
SDK app looks to see if you enabled data loss prevention in the SDK profile.
DLP Enabled – The app opens in Workspace ONE Boxer.

DLP Disabled – The app opens in the iOS Mail app.

3. Enable Links for Workspace ONE Web.

To enable the application to open HTTP / HTTPS links in the Workspace ONE Web, enable a few

dictionary and PLIST flags.

1. Work in the AWSDKDefaults bundle.

2. Create a dictionary named AWURLSchemeConfiguration and put it in the AWSDKDefaultSettings.plist.

3. Inside the AWURLSchemeConfiguration dictionary, create a new Boolean entry with the key name
enabled and set the Boolean value to Yes. If you set the Boolean value to No, then the HTTP and
HTTPS links open in Safari. If set to Yes, then your SDK app opens in Workspace ONE Web.

Screen Capture: Configuration of DLP to Control Links to Open in Workspace ONE app in the

application project

Developer Guide

Workspace ONE for iOS (Swift) Page 40 of 82

4. Contain Data to Workspace ONE Web

Use the data loss prevention, DLP, settings in the Workspace ONE UEM default SDK profile to enforce

the application to use Workspace ONE Web andWorkspace ONE Boxer.

If you do not enable data loss prevention in the SDK policy, the application opens links in Safari and

composes email in the iOS Mail app.

1. Navigate to Groups & Settings > All Settings > Apps > Settings and Policies > Security Policies.

2. Select Enabled for Data Loss Prevention.

3. Disable the Enable Composing Email check box for the MAILTO links. If you do not disable this option,
the application opens from the Mail app and not from Inbox.

Limitation With MFMailComposeViewController
If you use the MFMailComposeViewController scheme in your MessageUI framework, this functionality is

not supported. The system cannot specify how end users access your application when it is an attachment

in an email. End-users access the application with the Mail app and not Inbox.

SupportInformationController
The SupportInformationController class allows you to query for the email address and telephone numbers

for contacting enrollment support which you can display on the application UI.

Disable the Default Blocker Screen
The Workspace ONE SDK displays a blocker screen to cover the application’s content when the

application is not active. When the app is in the foreground, the Workspace ONE SDK closes the blocker

screen. You can disable this screen and use your own custom background blocker screen or use the

Workspace ONE SDK screen.

Procedure
1. Work in the AWSDKDefaults bundle.

2. Create a new Boolean entry with the key name as AWBlockerViewEnableKey in

AWSDKDefaultSettings.plist.

If you set AWBlockerViewEnableKey to No, then the Workspace ONE SDK disables the blocker
screen so that you can use your own blocker screen.

If you set AWBlockerViewEnableKey to Yes, then the Workspace ONE SDK uses its blocker screen.

If AWBlockerViewEnableKey is missing from the plist, then the Workspace ONE SDK displays its
blocker screen.

Screen Capture: Configuration of Blocker Screen in the application project

-

-

-

Developer Guide

Workspace ONE for iOS (Swift) Page 41 of 82

Restriction of Document Sharing
Workspace ONE data loss prevention supports the restriction of document sharing between mobile

applications. Restricting document sharing is optional. If it is in use, a document file that is in one app can

only be opened in another app if the other app is on a list of approved applications.

The list of approved applications is configured in the Workspace ONE Unified Endpoint Manager (UEM)

console. Restriction of document sharing is imposed at run time by the Workspace ONE mobile Software

Development Kit (SDK), if configured in the mobile application.

Console Configuration
The list of approved applications is configured in the management console. The configuration can be in an

SDK profile, for example, and the profile can be assigned to your app. Administrator privileges in the

enterprise Workspace ONE UEM console will be required to make the configuration.

The following instructions are an outline for guidance. Full documentation can be found in the online help.

1. Navigate to: Groups & Settings, All Settings, Apps, Settings and Policies, Security Policies.

This opens the Security Policies configuration screen, on which a number of settings can be switched on

and off, and configured.

2. For the Data Loss Prevention setting, select Enabled.

When Enabled is selected, further controls will be displayed.

3. For the Limit Documents to Open Only in Approved Apps setting, select Yes.

When Yes is selected, The Allowed Applications List control will be displayed.

4. Enter each of the approved applications in the Allowed Applications List text box.

5. Select Save to finalize the configuration.

Screen Capture: Configuration for Restriction of Document Sharing in the management console

This concludes the console configuration.

Developer Guide

Workspace ONE for iOS (Swift) Page 42 of 82

Application Configuration
Integrate with document sharing restriction in your app configuration by adding property settings to the

AWSDKDefaultSettings.plist file.

The following screen capture shows an example configuration.

Screen Capture: Configuration for Restriction of Document Sharing in the application project

The properties for integration are as follows.

EnableSecureDocumentController
The EnableSecureDocumentController property controls document sharing via the native

UIDocumentInteractionController interface. The property takes a Boolean value.

If EnableSecureDocumentController YES is set then the following restrictions will be applied to a file sent

to a UIDocumentInteractionController, if specified in the security policy.

The file can be copied to an app that is on the approved list from the management console. In this case,

copying means sending the file to the other app directly, not to an app extension. When a file is copied,

the device user interface will flip to the other app.

The file cannot be copied to an app that isn’t on the approved list. Note that this applies equally to the

VMWare Workspace ONE Productivity Apps suite.

The file cannot be sent to an app extension. This applies even if the app that hosts the extension is on

the approved list.

Some sharing actions won’t be available. Sharing actions means options, such as Copy and Print, that

appear in the default document interaction user interface.

If EnableSecureDocumentController NO is set then the above restrictions won’t be applied to a file sent to

a UIDocumentInteractionController. The approved list from the management console will be ignored. This is

the default.

DisableActivityViewController
The DisableActivityViewController property controls data sharing via the native

UIActivityViewController interface. The property takes a Boolean value.

If DisableActivityViewController YES is set then data cannot be shared via a UIActivityViewController, if

specified in the security policy. This option mustn’t be used in the following cases.

Don’t set DisableActivityViewController YES if your application uses the UIDocumentInteractionController

interface.

Don’t set DisableActivityViewController YES if you set EnableSecureDocumentController YES.

If DisableActivityViewController NO is set then data can be shared via a UIActivityViewController. This is

the default.

Developer Guide

Workspace ONE for iOS (Swift) Page 43 of 82

Security Policy Application
The above application configuration directs the SDK to apply the security policy of the enterprise to parts

of the native user interface. The security policy will be received at run time, for example in the SDK profile

from the management console.

The policy mightn’t specify data loss prevention, or might specify that document sharing isn’t restricted. In

that case, the SDK won’t modify the behaviour of the native user interface.

Developer Guide

Workspace ONE for iOS (Swift) Page 44 of 82

Restriction of Printing
Workspace ONE data loss prevention supports the restriction of printing the documents. Restricting print is

optional.

Restriction of print is imposed at run time by the Workspace ONE mobile Software Development Kit (SDK),

if configured in the mobile application.

Console Configuration
Restriction of print is configured in the management console. The configuration can be in SDK profile, for

example, and the profile can be assigned to your app. Administrator privileges in the enterprise

Workspace ONE UEM console will be required to make the configuration.

The following instructions are an outline for guidance. Full documentation can be found in the online help.

1. Navigate to: Groups & Settings, All Settings, Apps, Settings and Policies, Security Policies.

This opens the Security Policies configuration screen, on which a number of settings can be switched on

and off, and configured.

2. For the Data Loss Prevention setting, select Enabled.

When Enabled is selected, further controls will be displayed.

3. For restricting Print, select NO against Enable Printing

For allowing Print, select YES against Enable Printing

4. Select Save to finalize the configuration.

Screen Capture: Configuration for Restriction of Printing in the management console

This concludes the console configuration.

Developer Guide

Workspace ONE for iOS (Swift) Page 45 of 82

Application Configuration
Integrate with Print restriction in your app configuration by adding property settings to the

AWSDKDefaultSettings.plist file.

The following screen capture shows an example configuration.

Screen Capture: Configuration for Restriction of Printing in the application project

The properties for integration are as follows.

EnableSecurePrintInteractionController
The EnableSecurePrintInteractionController property controls printing via the native

UIPrintInteractionController interface. The property takes a Boolean value.

If EnableSecurePrintInteractionController YES , printing would be restricted only if printing is restricted in

the SDK DLP settings in UEM.

If EnableSecurePrintInteractionController NO , printing would not be restricted irrespective of the DLP

settings in UEM. This is the default.

Developer Guide

Workspace ONE for iOS (Swift) Page 46 of 82

Set Up the DataSampler Module for Analytics
The DataSampler module samples detailed device data and reports it back to the Workspace ONE UEM

console. Device details such as analytics and network adapters are all sampled with the DataSampler.

The DataSampler samples and transmits on two different time intervals. Device samples remain on to the

disk and the system removes them after transmitted. This process allows the developer to sample

statistics multiple times before sending them to Workspace ONE UEM. Samples stored on the disk are

useful when a device does not have network connectivity.

AWDataSampler is a singleton object. There can only be one DataSampler for each process.

Configuration
These parameters are required to set up a DataSampler.

sampleModules – Names the bitmask whose flags specify which modules to use.

defaultSampleInterval – Specifies the time in seconds between DataSampler samples for all modules by
default.

defaultTransmitInterval – Specifies the time in seconds between DataSampler transmissions for all
modules by default.

traceLevel – Determines the error and information logging level of the DataSampler module when it is
running.

Modules Available for Sampling
These modules are available for sampling in the DataSampler.

AWDataSamplerModuleSystem

AWDataSamplerModuleAnalytics

AWDataSamplerModuleNetworkData

AWDataSamplerModuleNetworkAdapter

AWDataSamplerModuleWLAN2Sample

Gather Telecom Data
Disable the AWDataSamplerModuleNetworkData mask if you gather telecom data using the Workspace

ONE Intelligent Hub. If you enable this mask for the SDK, then you receive duplicate data from the

Workspace ONE Intelligent Hub and from the SDK.

Use AnalyticsHelper
The AnalyticsHelper is a singleton with a property and a function. Send your custom analytics event from

your application to the console with this process.

Developer Guide

Workspace ONE for iOS (Swift) Page 47 of 82

Procedure
1. Ask your admin to enable the Analytics setting in the SDK profile for the SDK-built application. This

setting is in the console at Groups & Settings > All Settings > Apps > Settings and Policies > Settings >

Analytics.

2. In the application, call the recordEvent method on the singleton after the controllerDidFinishInitialCheck

delegate callback returns.

func sendAnalytics() {
 let analytics = AnalyticsHandler.sharedInstance
 analytics.recordEvent(
 AWSDK.AnalyticsEvent.customEvent,
 eventName: "EVENT_NAME",
 eventValue: "EVENT_VALUE",
 valueType: AWSDK.AnalyticsEventValueType.string
)
}

Results
After the system records the event, it saves the event in the SDK container for two hours. After the two

hours passes, the SDK sends analytics recorded to disk to the console the application re-starts.

What to do next
Locate the data in the console in Apps & Books > Applications > Logging > SDK Analytics.

Developer Guide

Workspace ONE for iOS (Swift) Page 48 of 82

Branding
Branding colors and images can be applied to the SDK user interface. Branding configuration can be used

to set

the primary highlight color of the buttons on SDK authentication screens.

the logo on SDK authentication screens.

the logo on the SDK splash screen.

There are two sources of branding configuration:

Enterprise branding, from the enterprise Workspace ONE UEM console with which the end user is
enrolled.

Static app branding, in the mobile app resources.

Enterprise branding will in general take precedence over static app branding.

Enterprise Branding
See the Workspace ONE administrator documentation for details of how to configure branding in the UEM

console. Different branding can be configured for different organization groups.

The configuration in the console will be retrieved and applied by the SDK instance in your mobile app. If an

administrator changes the configuration, the updated configuration will be retrieved and applied at run

time. The app needn’t be re-installed for branding changes to take effect, for example.

Access to Enterprise Branding Resources
Your app can access the enterprise branding configuration that has been retrieved by the SDK. The

configuration could be used to, for example, reflect the enterprise brand in the app user interface.

The enterprise branding configuration will be available after invocation of the callback:

controllerDidReceive(profiles: [Profile])

Access the values from the console with code like the following.

let brandingPayload = AWController.clientInstance().sdkProfile()?.BrandingPayload

The values in AWBranding become set after controllerDidFinishInitialCheck. If a value isn’t set in

the console, then the corresponding property will be nil.

Developer Guide

Workspace ONE for iOS (Swift) Page 49 of 82

Static App Branding
You configure your static app branding in the SDK settings property list.

The following table lists the properties that relate to branding. The properties are structured in a dictionary

hierarchy.

Property Type Value

Branding Dictionary Parent for all branding properties.

Branding, Colors Dictionary Parent for colors.

Branding, Colors, PrimaryHighlight Dictionary Primary highlight color.

, Red Number, 0 to 255 Red component of a color.

, Blue Number, 0 to 255 Blue component of a color.

, Green Number, 0 to 255 Green component of a color.

, Alpha Number, 0 to 255 Opacity of a color.

Branding, AppLogo_1x String, image set name App logo for smaller screens.

Branding, AppLogo_2x String, image set name App logo for larger screens.

Branding, SplashLogo_1x String, image set name Splash logo for smaller screens.

Branding, SplashLogo_2x String, image set name Splash logo for larger screens.

Branding, EnableBranding Boolean Overall switch.

Table: Branding properties and structure.

The following screen capture shows a sample branding property structure as it might appear in the

integrated development environment (IDE).

Screen Capture: Branding keys and values in the SDK settings property list.

The EnableBranding flag can be used as a convenient toggle for the whole static app branding

configuration. If EnableBranding is set to NO or zero, then the static configuration is ignored by the SDK.

Developer Guide

Workspace ONE for iOS (Swift) Page 50 of 82

Screen Capture: Branding on the splash screen Screen Capture: Branding on an authentication screen

Branding Images
Branding images from the app will be utilized by the SDK as follows.

SplashLogo, if specified, will appear on the SDK loading screen and on the second application login
screen.

AppLogo, if specified, will appear on SDK authentication screens.

Two sizes of each logo can be specified, 1x and 2x, for use on different device screen sizes. The SDK will

select the more suitable at run time and scale as needed. For best presentation, use a larger image for

your SplashLogo, and a smaller image for your AppLogo.

Image resources are specified in the logo properties as image set names. Image sets will be in the

application assets catalog. The following screen capture shows how these could appear in the IDE.

Screen Capture: Branding images in the assets catalog.

Application Screen Captures With Branding
The following screen captures show branding configuration in the SDK user interface.

Developer Guide

Workspace ONE for iOS (Swift) Page 51 of 82

Screen Capture: Default Branding on splash screen Screen Capture: Default Branding on authentication screen

Note About Branding Images
If the static branding images which include SplashLogo and AppLogo are not configured and if branding
images part of Enterprise Branding are not configured / downloaded, then SDK would apply its default
logo across the splash and authentication screens like shown below -

If SplashLogo and AppLogo are configured as part of Enterprise Branding, SDK would replace the

default logo’s with the Enterprise branding images after those images have been completely

downloaded.

If branding images are configured as part of Enterprise Branding, SDK will download these images

asynchronously i.e. SDK initialization will not wait for image downloads to complete.

Developer Guide

Workspace ONE for iOS (Swift) Page 52 of 82

Beacon Data Sent Upon Application Unlock or Sent Manually
The beacon is a regular update sent from the VMware Workspace ONE SDK for iOS (Swift) to the

Workspace ONE UEM console. The SDK sends this data every time it is unlocked. You can also force the

beacon when you want data.

Beacon Update Contents
The beacon update contains the listed information.

Table 1. Contents in the Beacon Update

Type of Information Data

General Device name

Organizational group

Application bundle identifier

Platform Device operating system (Apple, iOS)

Device operating system version

User User email

User full name

User display name

Enrollment Device enrolled

Device unenrolled

Device wipe pending

Compliance Device compliance

Application compliance

Send the Beacon Manually
Use an API to send the beacon manually.

let beaconTransmitter = SDKBeaconTransmitter.sharedTransmitter

// To send immediately
beaconTransmitter.sendDeviceStatusBeacon(completion: SendBeaconCompletion?)
beaconTransmitter.sendBeacon(updatedAPNSToken: String, completion: SendBeaconCompletion?)

// To start a schedule of how frequently to send.
// (If given time interval is less than 60, frequency will default to 60)
public func startSendingDeviceStatusBeacon(transmitFrequency: TimeInterval = 60)

//To stop the sending the scheduled beacon
public func stopSendingDeviceStatusBeacon()

Certificate Pinning
Use certificate pinning to help prevent man-in-the-middle (MITM) attacks by enabling an additional layer of

trust between listed hosts and devices.

Certificate pinning requires no code. Just enable SSL pinning in the Workspace ONE UEM console and

upload your certificate.

Developer Guide

Workspace ONE for iOS (Swift) Page 53 of 82

Check the Compromised Status of Devices with Compromised Protection
Workspace ONE UEM detects jailbroken devices and can wipe compromised devices if enabled in the

Workspace ONE UEM console.

Compromised protection requires no code unless you want to manually check the status of the device.

Check Compromised Protection Status
To check the status of a device directly in your application, whether the device is online or offline, call the

refreshDeviceCompromisedStatus() API from the DeviceInformationController singleton class.

//Swift
DeviceInformationController.sharedController.refreshDeviceCompromisedStatus { isJailbroken, evaluationToken, identifier in
 DispatchQueue.main.async {
 if isJailbroken {
 AWLogInfo("Device is compromised")
 }
 else {
 AWLogInfo(""Device is not compromised"")
 }
 }
}

Dynamic Compromise Detection Requirements
Dynamic compromise detection for iOS sets SDK-built apps to securely update the compromise detection

algorithm over-the-air. Apps that use this feature do not need to update or re-release after compromise

detection rule updates. To configure this feature, update to the supported SDK version and ensure that

devices can access specific URLs. To use dynamic compromise detection, update the SDK version and

ensure that devices can access specific URLs.

The SDK-built app must consume Workspace ONE SDK for iOS (Swift) v23.04 or later.

To receive the latest compromise detection rules, ensure that devices can connect to the listed hosts -
api.na1.region.data.vmwservices.com

sdk-config.gov.data.vmwservices.com

discovery.awmdm.com

signing.awmdm.com

If devices cannot access these URLs, they still get compromise detection but rules only update when
the SDK-built app consumes the latest SDK. This lapse in rule updates might result in false positives.

Note: If you use VMware Workspace ONE Tunnel, ensure that your traffic rules are configured to allow

devices to connect to the listed URLs.

-

-

-

-

Developer Guide

Workspace ONE for iOS (Swift) Page 54 of 82

Query Devices for MDM Information with DeviceInformationController
Use the DeviceInformationController singleton class to query devices for mobile device management

(MDM) information.

The class returns the listed MDM information.

Enrollment status

Compliance status

Managed status

Management type

Organizational group name

Organizational group ID

Device services URL

Single sign on status

Compromised status

Console version

Shared device status

is App Supported

Requery Method
The method queries the console, and the console sends a query command to the device to collect certain

types of device information.

Developer Guide

Workspace ONE for iOS (Swift) Page 55 of 82

SDK Logging APIs for Levels
Workspace ONE UEM groups logging messages into categories to distinguish critical issues from normal

activities.

The Workspace ONE UEM console reports the messages that match the configured logging level plus any

logs with a higher critical status. For example, if you set the logging level to Warning, messages with a

Warning and Error level display in the Workspace ONE UEM console. The SDK-built application collects logs

over time and stores them locally on the device until another API or command is invoked to transmit the

logs.

Note: When an enterprise wipe occurs, the console does not purge the log files. You can retrieve logs

after a device re-enrolls to determine what issues occurred in the last enrollment session to cause the

enterprise wipe.

Table 1. SDK Logging Level APIs and Level Descriptions

Level Logging API Description

Error AWLogError("{log

message}")

Records only errors. An error displays failures in processes

such as a failure to look up UIDs or an unsupported URL.

Warning AWLogWarning("{log

message}")

Records errors and warnings. A warning displays a possible

issue with processes such as bad response codes and invalid

token authentications.

Information AWLogInfo("{log

message}")

Records a significant amount of data for informational

purposes. An information logging level displays general

processes, warning, and error messages.

Debug or

Verbose

AWLogVerbose("{log

message}")

Records all data to help with troubleshooting. This option is not

available for all functions.

SDK Logging APIs
The following API will allow you to send logs to UEM or alternatively save SDK log data.

The developer can manually trigger the transmission of SDK logs to the Workspace ONE UEM console with

APIs. The Workspace ONE UEM admin can use the View Logs menu item to get logs for an application

when they are transmitted. Alternatively, Workspace ONE SDK provides a way to retrieve persisted SDK

logs. The retrieved logs are in utf8 encoded Data object. The maximum size of the returned log object will

be 5 MB.

Developer APIs
iOS (Swift) - AWController

public func sendLogDataWithCompletion(
 completion: @escaping (success: Bool, _ error: NSError?) -> Void
)

Developer Guide

Workspace ONE for iOS (Swift) Page 56 of 82

iOS (Swift) - WS1SDKDataProvider

do {
 let logProvider = WS1SDKDataProvider()
 let logChunks = try logProvider.fetchSDKLogChunks()

 logChunks.forEach { logChunk in
 // Each chunk data will be not more than 5 MB.
 let logData = logChunk.data

 // If a temporary file needs to be created with the log data, app can use the suggested file name.
 let suggestedFileName = logChunk.suggestedFileName
 }

 //Perform logic here with fetched log data
 } catch let error {
 print("Failed to fetch SDK Log data with error: \(error)")
 }

iOS (Objective-C) - AWLog

- (void)sendApplicationLogsWithCompletion:
 (void(^)(BOOL success, NSError *error))completion;
- (BOOL)hasAWLogs;

Developer Guide

Workspace ONE for iOS (Swift) Page 57 of 82

SDK Log Types
Workspace ONE UEM displays logs for applications that report application failures and that report

application-specific data. These logs integrate with the VMware Workspace ONE SDK so that you can

manage applications built by it.

Find logs for applications in Apps & Books > Analytics > App Logs.

Setting Description

Application

Logs

This type of log captures information about an application. You set the log level in the

default SDK profiles section, ettings > All Settings > Apps > Settings and Policies >

Settings > Logging. You must add code into the application to upload these logs to the

Workspace ONE UEM console.

Crash Logs This type of log captures data from an application the next time the application runs after

it crashes. These logs are automatically collected and uploaded to the Workspace ONE

UEM console without the need for extra code in the SDK application.

Configure Logging for the Default SDK Profile
Use Logging so the system records data for applications the use the VMware Workspace ONE SDK

framework. The Workspace ONE UEM system collects logs until the log file size reaches 200 MB for SaaS

environments. If the log size exceeds 200 MB, the system stops collecting logs. The Workspace ONE UEM

console notifies you when your application log size reaches 75% of 200 MB. To act on the application log

size, contact your Workspace ONE UEM Representative.

Ask for an increase in your application log size.

Ask for a purge of your application log. The system can purge logs older than two weeks.

Procedure
1. Navigate to Groups & Settings > All Settings > Apps > Settings and Policies > Settings.

2. Select Enabled for Logging.

3. Choose your Logging Level from a spectrum of recording frequency options.

4. Select Send logs over Wi-Fi only to prevent the transfer of data while roaming and to limit data
charges.

5. Save your settings.

Request Application Logs for SDK-Built Apps
Request applications logs for your SDK-built applications from the device record in the console.

Procedure
1. Navigate to Devices > List View and select the device.

2. Select the Apps tab, select the SDK-built app, and choose Request Logs.
The Request Logs button displays after you select the application.

3. Complete the settings in the Request Logs window. You can retrieve logs that are currently available or
you can select to capture a log type for a duration of time.

4. To retrieve the logs, navigate to Apps & Books > Applications > Logging > App Logs.

5. Find the log for the application with the App Name column and download the file.

Configure View Logs for Internal Applications
Use the View Logs feature to access available log files pertaining to applications that use the Workspace

ONE SDK framework. Log types include all logs, crash logs, and application logs. With this feature, you can

download or delete logs.

Developer Guide

Workspace ONE for iOS (Swift) Page 58 of 82

Filter options using the Log Type and Log Level menus so that you can find the type or amount of

information to research and troubleshoot applications that use the SDK framework.

Procedure
1. Navigate to Apps & Books > Applications > Native and select the Internal tab.

2. Select the application and then select More > View > Logs option from the actions menu.

3. Select desired options depending on if you want to act on specific devices (selected) or to act on all
devices (listed).

Setting Description

Download

Selected

Download selected logs with information pertaining to applications that use the

Workspace ONE SDK framework.

Download Listed Download all logs in all pages with information pertaining to applications that use the

Workspace ONE SDK framework.

Delete Selected Delete selected logs with information about applications that use the Workspace ONE

SDK framework.

Delete Listed Delete all logs in all pages with information about applications that use the Workspace

ONE SDK framework.

Developer Guide

Workspace ONE for iOS (Swift) Page 59 of 82

Restrictions

Offline Access
The offline access function allows access to the application when the device is not communicating with the

network. It also allows access to Workspace ONE UEM applications that use the SSO feature while the

device is offline.

The Workspace ONE SDK automatically parses the SDK profile and honors the offline access policy once

AWController is started. If you enable offline access and an end-user exceeds the time allowed offline,

then the SDK automatically presents a blocker view to prevent access into the application. The system

calls the lock method of the AWSDKDelegate so your application can act locally.

Screenshot Restrictions
Admin can restrict taking screenshot via the DLP settings.

If taking screenshot is disabled and user captures a screenshot or starts screen recording, Workspace

ONE SDK will present a blocker screen to the user describing that taking screenshot and screen recording

has been restricted by the admin. The user will have to dismiss the screen by tapping on a “Got it” button.

Please note that the blocker screen acts as hindrance to the user but it does not prevent the actual

capture of the screenshot.

Note
Automatic enforcement of these restrictions would need AWController to be started by the application.

Developer Guide

Workspace ONE for iOS (Swift) Page 60 of 82

Custom Settings for the SDK
The VMware Workspace ONE SDK for iOS (Swift) allows you to define your own custom settings for your

application using an SDK profile.

You can paste raw text in the custom settings section, and the SDK makes this content available inside the

application using the AWCustomPayload object.

You can define an XML, JSON, key-value pairs, CSV, or plain text for your settings. Parse the raw text in

the application once it is received.

Screen Capture: Configuration of Custom Settings in the management console

Method Usage

let customPayload = AWController.clientInstance().sdkProfile()?.customPayload

Developer Guide

Workspace ONE for iOS (Swift) Page 61 of 82

Encrypt Data on Devices
The VMware Workspace ONE SDK for iOS (Swift) offers the use of basic encrypt and decrypt methods to

operate on raw data that the system encrypts using the SDK’s internal encryption keys.

These methods are defined in the AWController. Important: Do not use these encryption methods on any

mission critical data or data that you cannot recover. Examples of unrecoverable data include no backup

on a server or if the data cannot be re-derived through other means. The encrypted key (and associated

encrypted data) is lost in the event that an end user deletes the application or if an enterprise wipe.

Prequisites
Before you call the encryption methods, ensure the AWControllerDelegate receives no errors.

Swift: Applications must ensure that AWControllerDelegate receives the

controllerDidFinishInitialCheck(error: NSError?) callback with no errors before they call the

encryption methods.

Objective-C: The AWControllerDelegate callback method is

-(void)initialCheckDoneWithError:(NSError * _Nullable)error;

Encryption Strength and Authentication Mode
The strength of the encryption depends on the enabling of the authentication mode.

If you set authentication passcode or username and password, then the system derives the key used for

encryption from the passcode or username and passcode the user enters. The system keeps the key in

device volatile memory for additional security.

If you disable authentication, the system randomly generates the encryption key and persists it in device

storage.

Encrypt Data not Stored with Core Data
The Workspace ONE SDK for iOS (Swift) provides the ability to encrypt data that Core Data does not

store. These methods take in the data input and return back either the encrypted or decrypted data.

These methods are only used for the transformation of the data. The application developer is responsible

for the storage of the encrypted data.

Encryption Method: Swift

public func encrypt(_ data: Data) throws -> Data
public func decrypt(_ data: Data) throws -> Data

Encryption Method: Objective-C

(NSData * _Nullable)encrypt:(NSData * _Nonnull)data
 error:(NSError * _Nullable * _Nullable)error SWIFT_WARN_UNUSED_RESULT;

(NSData * _Nullable)decrypt:(NSData * _Nonnull)data
 error:(NSError * _Nullable * _Nullable)error SWIFT_WARN_UNUSED_RESULT;

Error Codes Defined and Examples
The enum AWSDKCryptError defines the error codes for the error thrown by the methods.

Developer Guide

Workspace ONE for iOS (Swift) Page 62 of 82

Encrypt

let controller = AWController.clientInstance()
let plainData: Data = .. //assign data to be encrypted
do {
 let encryptedData = try controller.encrypt(plainData)
 //save encryptedData for future use
 //...
} catch let error {
 print(" failed to encrypt data with error: \(String(describing: error))")
}

Decrypt

let controller = AWController.clientInstance()
let encryptedData = ..//fetch data previously encrypted using Encrypt method above

do {
 let decryptedData = try controller.decrypt(encryptedData)
 //do something with decryptedData
 //...
} catch let error {
 print(" failed to encrypt data with error: \(String(describing: error))")
}

Developer Guide

Workspace ONE for iOS (Swift) Page 63 of 82

Enable and Code APNs in the Application
To use Apple push notifications in your SDK-built application and Workspace ONE UEM, enable the use of

APNs and add code to support push notifications.

Setting a token value to AWController initiates the call to the console because it sends the beacon. Assign

the token value to AWController only after the token value has changed.

Setting the token value to nil clears the token value from the console and you cannot use the token to

send push notifications. Note: The sample code is for reference and can be adjusted per the app

requirements. See the sample app for more examples of how the listed methods are used.

Procedure
1. Select Target and enable push notifications in capabilities. You see two checks in Push Notification.

Push Notifications Example

2. Add import UserNotifications to the top of AppDelegate.swift.

Developer Guide

Workspace ONE for iOS (Swift) Page 64 of 82

3. Add applicable methods to the end of AppDelegate.swift.

func registerForPushNotifications() {
if #available(iOS 10.0, *){
 UNUserNotificationCenter.current()
 .requestAuthorization(options: [.alert, .sound, .badge]) {
 granted, error in
 print(“Permission Granted\(granted)”)
 guard granted else { return }
 self.getNotificationSettings()
 }
 }
 else {
 let notificationSettings = UIUserNotificationSettings(
 types: [.alert, .badge, .sound], categories: nil)
 DispatchQueue.main.async {
 UIApplication.shared.
 registerUserNotificationSettings(notificationSettings)
 }
 }
}

@available(iOS 10.0, *)
func getNotificationSettings() {
 UNUserNotificationCenter.current()
 .getNotificationSettings {settings in
 print("Notification settings\(settings)")
 guard settings.authorizationStatus == .authorized else { return }
 DispatchQueue.main.async {
 UIApplication.shared.registerForRemoteNotifications()
 }
 }
}

func application(
 _ application: UIApplication,
 didRegisterForRemoteNotificationsWithDeviceToken deviceToken: Data
) {
 let tokenParts = deviceToken.map {
 data in String(format: "%02.2hhx", data)
 }
 let token = tokenParts.joined()
 print("Device Token: \(token)")
 let beaconTransmitter = SDKBeaconTransmitter.sharedTransmitter
 beaconTransmitter.sendBeacon(updatedAPNSToken: token) { success, error in
 if (success) {
 AWLogInfo("Device token sent successfully")
 }
 else {
 AWLogError("failed to send device token: \(String(describing: error))")
 }
 }
}

func application(
 _ application: UIApplication,
 didFailToRegisterForRemoteNotificationsWithError error: Error
) {
 print("Failed to register: \(error)")
}

4. Add registerForPushNotifications() near the end of

application(_:didFinishLaunchingWithOptions:), and before return:.

Enable APNs in the Console
Use SDK-built applications to send Apple push notifications to applicable devices. Enable the SDK-built app

to use APNs. This task assumes that the SDK-built app is already uploaded and managed in the Workspace

ONE UEM console. These apps are available in an app store and they use Production APNs certificates.

Prerequisites
Generate your production APNs certificates so you can upload the certificates to the Workspace ONE

UEM console. For details, visit the topic Registering Your App with APNs on the Apple Developer site.

Procedure

Developer Guide

Workspace ONE for iOS (Swift) Page 65 of 82

1. Navigate to Apps & Books > Applications > SDK-built app and choose Edit.

2. Select the Files tab and select Yes for Application Supports APNs.

3. Select Production for APNs Certificate.

4. Use Upload to add your certificates to the console as an APNs Production Certificate.

5. Select Save & Assign. Editing the assignment is optional and not necessary to finish this task. You can
Save and Publish from the assignment module.

Developer Guide

Workspace ONE for iOS (Swift) Page 66 of 82

APIs to Use Custom Certificates for Your SDK-Built Apps
The Workspace ONE SDK for iOS (Swift) has APIs to evaluate server trust and verify configured

certificates. API to Validate Server Trust

Declaration

func validate(
 serverTrust: SecTrust,
 trustStore: CertificatesTrustStore,
 strictness: SSLTrustStrictness
) -> Bool

The admin configures trusted certificates as Credentials in the SDK profile. When the SDK starts, it
fetches custom anchors and SSL certificates configured by the admin and stores them securely as
configured.

While connecting to a network host, the app can receive a challenge. During this challenge, the app
can use an API to validate the server trust and can decide to allow or cancel the connection.

Parameter Explanations - ServerTrust, TrustStore, and SSLTrustStrictness

ServerTrust

Retrieve the SecTrust object from the ProtectionSpace given to the app for authentication by the

URLSession task.

The API copies the certificate chain and policies for evaluation, so that the app can perform additional

operations on the SecTrust in its original form.

TrustStore

The API considers the TrustStore type while it evaluates the ServerTrust. The API supports only

deviceAndCustom and custom types for TrustStore.

If you configure the type as custom, the API uses only custom anchors or self-signed SSL certificates

(those anchors or certificates configured by the admin in a Credentials payload) to evaluate trust. If

your server uses intermediate certificate authorities, you must add the intermediate certificate

authorities in the Credentials payload.

If type is deviceAndCustom, the SDK uses system trust store combined with the configured

certificates to evaluate the ServerTrust.

Note:

You can use self-signed SSL certificates with or without any CA certificates by adding them directly to

the SDK Credentials payload.

SSLTrustStrictness

The SDK uses SSLTrustStrictness to consider recoverableTrustFailure SecTrustResultType

as an end result, to be trusted or not trusted.

If the value for strictness is strict, the SecTrustResultType end result is
recoverableTrustFailure and is not trusted.

If the value for strictness is ignore, the SecTrustResultType end result is
recoverableTrustFailure and is trusted.

If the TrustStore is custom, the SDK forms a complete chain with the certificates from the SecTrust

and validates the chain. Validation is according to the policies set in the SecTrust. If TrustStore is

deviceAndCustomThe, the SDK forms the chain up to a certificate that is in the trusted list.

-

-

-

-

-

Developer Guide

Workspace ONE for iOS (Swift) Page 67 of 82

Certificates Considered for Server Trust Validation

Root CA certificates

Intermediate CA certificates

SSL certificates

Upload public X509 certificates in DER or PEM format. The SDK does not consider certificates uploaded

with a private key for server trust evaluation.

API to Retrieve Configured Certificates
Declaration

func retrieveStoredPublicCertificates(
 completion: (
 _ certificateMap: [String: [PublicCertificate]]?,
 _ error: NSError?
) -> Void
)

Parameter Explanation Completion

The completion block is called with the configured certificates map. It returns an error if there is any

problem while retrieving the certificates.

The API returns a map. The keys are represented using the constants from AWCertificateUsageKey
class. Corresponding values are array of Public Certificate Objects. You can query certain x509 attributes

from the PublicCertificate objects and verify the configuration.

@objc(AWCertificateUsageKey)
public class CertificateUsageKey: NSObject {

 // Certificate of Usage key to reflect Integrated Authentication
 public static let integratedAuthIdentity: String

 // Certificate of Usage key to reflect Integrated Authentication
 public static let uncategorizedIdentity: String

 // Certificate of this usage are used for signing requests for MAG Proxy
 public static let magSigning: String

 // Certificate of this usage are used for signing requests for Tunnel Proxy
 public static let tunnelSigning: String

 // Certificates of type SSL
 public static let selfSignedSSLCerts: String

 // Certificates of type Custom Anchors
 public static let customTrustedAnchorCerts: String

 // SDK doesn't have specific usage for this type of certificates
 public static let others: String
}

-

-

-

Developer Guide

Workspace ONE for iOS (Swift) Page 68 of 82

VMware Workspace ONE SDK for iOS (Swift) and the Apple App Review
Deploy apps that use the Workspace ONE SDK for iOS (Swift) to the App Store without dependency on

other Workspace ONE UEMcomponents. The SDK includes a mode for your application for use during the

Apple App Review process.

This app review mode removes dependencies on the broker applications such as the Workspace ONE

Intelligent Hub for iOS, Container, and the Workspace ONE application. It also enables the app reviewer to

access the application without enrolling with Workspace ONE UEM.

Explanation of the Process
Build your application and incorporate the Workspace ONE SDK for iOS (Swift). Then, build a test

environment in Workspace ONE UEM and prepare the application for submission to the app review

process. For general steps in the process, see Steps to Configure App Review Mode.

Build a Test Environment in Workspace ONE UEM
Create a test environment in Workspace ONE UEM that you use only for this app review process. For

details on how to create this environment and how to upload your application to it, see Configure an App

Review Mode Testing Environment in the Workspace ONE UEM Console.

Identify the Server URL and Group ID
To help your application work for the review process without dependencies on other Workspace ONE

UEM components, follow the procedure in Declare the App Review Server and Group ID in the SDK PLIST.

Steps to Configure App Review Mode
Deploy apps that use the VMware Workspace ONE SDK for iOS (Swift) to the App Store without

dependency on other Workspace ONE UEM components. The SDK includes a mode for your application

for use during the Apple App Review process.

This app review mode removes dependencies on the broker applications such as the Workspace ONE

Intelligent Hub for iOS, VMware Container, and the Workspace ONE application. It also enables the app

reviewer to access the application without enrolling with Workspace ONE UEM.

Important: Use this work flow only on applications built with the Workspace ONE SDK that you submit to

the App Store for review. Do not use this work flow for any other application development processes.

Also, do not use the process in a production environment. This process is only supported for use in a test

environment for applications you submit to Apple’s App Review.

Procedure

1. Integrate the SDK with your application.

2. Configure the app review mode testing environment in the Workspace ONE UEM console, upload the

application IPA file, assign it an SDK profile, and deploy it to the test environment.

See Configure an App Review Mode Testing Environment in the Workspace ONE UEM Console.

3. Assign an app review mode server and a group ID to the SDK PLIST.

See Declare the App Review Server and Group ID in the SDK PLIST.

4. Test the IPA in the test environment.

See Test the App Review Mode Testing Environment in the Workspace ONE UEM Console.

5. Run the app store build script.

See [Build Script Information for App Store Submission].

Developer Guide

Workspace ONE for iOS (Swift) Page 69 of 82

6. Submit your application for review to the Apple App Store ensuring to add the app review mode server,

group ID, and user credentials from the test environment to the submission.

Configure an App Review Mode Testing Environment in the Workspace ONE
UEM Console
With help from your admin, configure a testing environment in the Workspace ONE UEM console. Upload

your application to this environment so that the app reviewer can review your application without

dependencies on other Workspace ONE UEM components.

Prerequisites
Integrate the Workspace ONE SDK for iOS (Swift) with your application.

You need Workspace ONE UEM system admin permissions to configure these components. If you do not
have these permissions, ask your Workspace ONE UEM Admin for help.

Ensure that you create a testing environment that hosts no production applications and components.
Use this app review mode environment only for the app review process.

Configure all options in the app review organization group.

Procedure
1. Configure a special organization group for app review mode in the Workspace ONE UEM console.
Record the group ID for later entry to the SDK PLIST.

2. Configure an app review mode user with credentials in the Workspace ONE UEM console. You give
these credentials to the app reviewer so record the credentials.

3. Create a smart group and add the user to the group. Workspace ONE UEM deploys applications based
on assignment groups, specifically the smart group type.

4. Configure the SDK profile. Use the default SDK profile or a custom SDK profile. Whatever SDK profile
you use, ensure that the desired SDK features are enabled. Features to review are the Authentication
Type, Single Sign On, and the App Tunnel Mode.

5. Upload the application binary (IPA) to the internal application area or the public application area of the
Workspace ONE UEM console. Ensure that you assign the SDK profile to the application and assign the
test smart group to the application. The bundle identifier must match the application submitted to the
App Review process.

6. Disable the requirement for MDM enrollment so the app reviewer can access the application without
enrolling with MDM. Although the setting are nested under the Content Locker, it applies to all
applications. Improvements to the user interface are planned for the future.
Ensure you are in the app review mode organization group.

Navigate to Groups & Settings > All Settings > Content > Applications > Content Locker.

In the General area, disable Require MDM Enrollment.

Select Save.

Declare the App Review Server and Group ID in the SDK PLIST
To prepare to submit your application to the Apple App Review process, add the app review mode server

URL and the group ID. These strings allow the reviewer to review your application without the need for

other Workspace ONE UEM components.

Procedure

1. If you have not done so, in your Xcode project, create a bundle named AWSDKDefaults.

2. If the AWSDKDefaults bundle does not have a PLIST named AWSDKDefaultSettings.plist, create this

PLIST in the bundle.

3. Create a key in the PLIST with the data type string. Name this key com.vmware.air-

watch.enrollment.test-server-url.

This name is case sensitive.

-

-

-

-

Developer Guide

Workspace ONE for iOS (Swift) Page 70 of 82

4. Set the value of this key to the server URL of the Workspace ONE UEM environment you set up in

Configure an App Review Mode Testing Environment in the Workspace ONE UEM Console.

Ensure to meet these requirements for the URL.

Include https:// before the URL.

Ensure the URL is the exact device services server URL. Do not use the console or API server URL.

Do not include /deviceservices at the end of the URL. The SDK appends this automatically.

5. Create another key in the PLIST with the data type string. Name this key com.vmware.air-

watch.enrollment.test-org-group-id.

This name is case sensitive.

6. Set the value of this key to the group ID of the app review group you setup in Configure an App Review

Mode Testing Environment in the Workspace ONE UEM Console.

Test the App Review Mode Testing Environment in the Workspace ONE UEM
Console
Test that the IPA file, server URL, group ID, and user credentials work before you submit the application

for review.

Procedure

1. Attempt to run the app on a device without any previous app data.

This action ensures that stale URL and device information is not present on the device. It also ensures

there are no other Workspace ONE UEM apps on the device.

2. Enter the server URL and group ID when the app prompt for these options.

3. Enter the user credentials when prompted.

Results

If the SDK permits you to continue without error and controllerDidFinishInitialCheck is called, the test

environment and components are successful.

-

-

-

Developer Guide

Workspace ONE for iOS (Swift) Page 71 of 82

Migrate the Objective-C Version to the Swift Version
To migrate to a version of the Workspace ONE SDK for iOS (Swift), remove the old SDK and add the

current one to your environment.

See Component Changes in the Workspace ONE SDK for iOS (Swift) for changes to make to your project

to prevent build errors.

Share Your Keychain
Share your keychain between the SDK applications so you can use all the SDK capabilities. See Keychain

Access Group Entitlements.

Remove the Objective-C Version of the SDK
Delete the listed Workspace ONE SDK for iOS (Swift)frameworks and libraries to remove the SDK.

Procedure
1. On the General tab in your project, delete the AWSDK.framework from both the Embedded Binaries
and Link Framework and Libraries areas.

2. Open the Build Phases tab in the project settings of your application.

3. Delete AWKit from your project.

4. Delete AWlocalization from your project.

Add the Swift Version of the SDK
Add Workspace ONE SDK for iOS (Swift) frameworks and edit the locations of the listed calls to migrate

SDK behaviors to the current version. If you do not edit the listed call locations, the UI behavior is

inconsistent with the previous SDK version.

Procedure
1. Drag and drop the current AirWatchSDK framework and the AWCMWrapper file into your Link Binary
with Libraries step in the build phase section of your project settings.

2. Change the location of your StartSDK call. Call it in the didFinishLaunchingWithOptions method that is
inside your application delegate class. In versions before the Workspace ONE SDK v17.x, you called
awcontroller.start() within the applicationDidBecomeActive method.

3. Build your project.

4. Resolve naming differences and API differences that changed in the new SDK causing build errors.

Component Changes in the Workspace ONE SDK for iOS (Swift)
If you migrate an older version of the SDK to install it, review the list of changed components. Update

names and locations of components to prevent or resolve build errors caused by the differences between

SDK versions.

Samples present the old version of the code followed by the current code.

Developer Guide

Workspace ONE for iOS (Swift) Page 72 of 82

Component Sample Code

AWController start

In the previous SDK you called

awcontroller.start() within the

applicationDidBecomeActive

method.

In the current SDK, start the

SDK within the

didFinishLaunchingWithOptions

method inside your application

delegate class.

///5.9.X Implementation func applicationDidBecomeActive(_
application: UIApplication) let awc = AWController.clientInstance()
awc.delegate = self awc.callbackScheme = "myAppName" awc.start() }

///Swift version Implementation func application(_ application:
UIApplication, didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey: Any]?) -> Bool { let awc =
AWController.clientInstance() awc.delegate = self
awc.callbackScheme = "myAppName" awc.start() return true }

CanhandleProtectionSpace

(Integrated Authentication)

Update the code for

authentication challenges and

chain validation.

///5.9.X Implementation try
AWController.clientInstance().canHandle(challenge.protectionsSpace)

///Swift version Implementation try
AWController.clientInstance().canHandle(protectionsSpace:
challenge.protectionsSpace)

AWLog singleton (Logging)

Use this instead of the

AWController to send logs.

///5.9.X Implementation
AWLog.sharedInstance().sendApplicationLogs(success, errorName)

///Swift version Implementation
AWController.clientInstance().sendLogDataWithCompletion { (success,
error) }

Network Status

Update the front of the enum

to AWSDK.

///5.9.X Implementation AWNetworkActivityStatus

///Swift version Implementation AWSDK.NetworkActivityStatus

Profiles and profile payloads

Drop the AW from the front of

profiles.

///5.9.X Implementation AWProfile

///Swift version Implementation Profile

Custom Settings

Access custom settings

through AWController instead

of AWCommanManager

///5.9.X Implementation
AWCommandManager().sdkProfile().customPayload

///Swift version Implementation
AWController.clientInstance().sdkProfile()?.customPayload

Account object

The account object is now a

property on AWController

instead of an accessor

method.

///5.9.X Implementation AWController.clientInstance().account()

///Swift version Implementation
AWController.clientInstance().account

User credentials ///5.9.X Implementation
AWController.clientInstance().updateUserCredentials(completions: {

Developer Guide

Workspace ONE for iOS (Swift) Page 73 of 82

Component Sample Code

(success, error) in { ... })

///Swift version Implementation
AWController.clientInstance().updateUserCredentials(with: {
(success, error) in { ... })

OpenInURL calls ///5.9.X Implementation
AWController.clientInstance().handleOpen(url, fromApplication:
sourceApplication)

///Swift version Implementation
AWController.clientInstance().handleOpenURL(url, fromApplication:
sourceApplication)

DeviceInformationController

Replace

MDMInformationController with

DeviceInformationController

NA

Manually load commands

Use an API on AWController

to force commands to reload

instead of using the command

manager.

///5.9.X Implementation
AWCommandHandler.sharedHandler().loadCommands()

///Swift version Implementation
AWController.clientInstance().loadCommands()

Developer Guide

Workspace ONE for iOS (Swift) Page 74 of 82

Multitasking Split View Support
The VMware Workspace ONE SDK supports split view on iPad for multitasking.

The following actions whenever triggered by any of the SDK applications, all the other SDK applications in

foreground will detect the same action and perform the required operation.

1. Unenroll

2. Logout

3. Lock and Unlock: In this case the action will be detected only by the SDK applications from same
keychain cluster.

Important: For compatibility, Hub or other anchor application should integrate the VMware Workspace ONE

SDK version 21.10 or later. Also, Login event is not supported for the feature and user would need to

terminate and relaunch the application after logging in Hub or other anchor applications.

for information on split view see the Apple webSite

https://support.apple.com/en-us/HT207582

Developer Guide

Workspace ONE for iOS (Swift) Page 75 of 82

Fetch Application Status and Device Information
Workspace ONE SDK fetches the Application Status and takes appropriate action. Applications can

programatically check the status of the application or display the details in UI using SDK provided API

//Swift
DeviceInformationController.sharedController.fetchApplicationAssignmentStatus { appStatus, deviceInformation in

}

Applications can also programatically get the details like organization group and the UEM host to which the

device is enrolled.

//Swift
let awController = AWController.clientInstance()
let organizationGroup = awController.enrollmentInfo.organizationGroup
let host = awController.enrollmentInfo.hostName

Note
In order to use these APIs, application would need AWController instance to be started.

Developer Guide

Workspace ONE for iOS (Swift) Page 76 of 82

Application Attestation
The Apple app attestation service will be used to verify the bundle identifier of custom SDK apps during

enrolment.

Every app must set the teamID property of the AWController instance before starting the SDK.

The service must be reachable during enrolment. See the advice from Apple about use of their products
on enterprise networks, for example under App validation here https://support.apple.com/en-
us/HT210060.

https://support.apple.com/en-us/HT210060

Developer Guide

Workspace ONE for iOS (Swift) Page 77 of 82

Support for Tunnel with WKWebView
Workspace ONE SDK supports Tunneling with WKWebView from iOS 17 onwards.

Requirements
1. Xcode 15+

2. iOS 17+

Enabling Tunnel with WKWebView
 #if swift(>=5.9)
 if #available(iOS 17.0, *) {
 do {
 // Enabling Tunnel on an instance of WKWebView.
 // WorkSpace One SDK needs to be intialised before enabling Tunnel.
 try self.wkWebView?.enableTunnel()
 } catch let error {
 print("Failed to enable Tunnel - \(error)")
 }
 }
 #endif

Developer Guide

Workspace ONE for iOS (Swift) Page 78 of 82

WorkspaceOne SDK Error lists

Error

Code Error Name Possible reasons

Error

Description

0 internalError Internal error occurred

within the SDK. Returns

when failed to enroll or

unknown server error

occur.

Internal error

occurred within

the SDK.

1 stopSDKRequested Call to stop AWSDK

from app before

initialization could be

done.

Call to stop

AWSDK from

app before

initializations

could be done.

2 registeringApplicationBlocked When attempting to

register the

application, the

console has blocked us

from registering.

When

attempting to

register the

application, the

console has

blocked us from

registering.

3 enrollmentInformationSetup When failed to fetch

Enrollment status or

profile.

Enrollment

status could not

be completed.

4 emptyProfiles No SDK profiles were

retrieved, and there

are no saved profiles.

No profiles have

been

downloaded,

and there were

no saved

profiles.

5 proxyFailedToStart Failed to enforce

proxy configuration.

Proxy server

failed to start

with provided

configuration.

6 integratedAuthenticationCertificatesNotDownloaded Invalid certificate Data

received, certificate

expiry or server

responded with empty

certificate details.

Integrated

Authentication

certificates

could not be

downloaded.

7 applicationIdentityNotSet When user

authentication or

device registration

fails.

Failed to verify

application

status from

server.

8 failedToFetchPinningCertificate Invalid certificate Data

received, certificate

expiry or server

Failed to

download

certificates to

Developer Guide

Workspace ONE for iOS (Swift) Page 79 of 82

Error

Code Error Name Possible reasons

Error

Description

responded with empty

certificate details.

do certificate

pinning.

9 failedToFetchEnvironmentInformationFromAnchor App Attestation failed,

server not reachable.

Failed to fetch

environment

information for

app from HUB.

10 callBackSchemeNotConfigured Callback scheme has

not been set on

AWController’s

instance. Please set

your app’s custom URL

scheme.

Callback scheme

has not been set

on

AWController’s

instance. Please

set your app’s

custom URL

scheme.

11 airWatchApplicationSchemeNotInAllowedLists No AirWatch

application URLs

schemes have been

whitelisted in app’s

info.plist. Please

whitelist AirWatch

app’s custom URL

scheme.

No AirWatch

application URLs

schemes have

been allowed in

app’s info.plist.

Please add

AirWatch app’s

custom URL

scheme.

12 anchorRequiredForThirdPartyApplictionBootstrap Attempted to run a

third party application

as standalone when a

container app is not

installed.

Attempted to

run a third party

application as

standalone when

a container app

is not installed.

13 failedToReportUnenrollmentStatus Server not reachable. Failed to report

unenrollment

status to the

console.

14 userReachedMaximumAllowedUnlockAttempts User Failed to Unlock

App in Maximum

Allowed Attempts.

User Failed to

Unlock

Protected Data

in Maximum

Allowed

Attempts.

15 deviceIsCompromised Device is jailbroken. Device is

compromised.

16 consoleVersionNotCompatible Console version is not

compatible with

current version of SDK.

Console version

is not compatible

Developer Guide

Workspace ONE for iOS (Swift) Page 80 of 82

Error

Code Error Name Possible reasons

Error

Description

with current

version of SDK.

17 invalidKeyWrappingConfiguration Return when invalid

AWSDKConfiguration

provided

Disable Strict

Key Wrapping is

not allowed.

18 protectedDataIsUnavailable Fail to read from

keychain as key might

have updated.

SDK cannot

proceed as

protected data

is unavailable.

19 tunnelFailedToStart Failed to enforce

Tunnel configuration.

Tunnel was not

able to start

using the profile.

20 missingExpectedRequirements When SDK

requirements like

callback schema is not

set.

AWController is

expected to be

provided with

proper

requirements.

21 dataMigrationFailure Failed to move legacy

data in upgrade

scenario.

Failed to migrate

SDK data.

22 deviceNotEnrolled Current device got

deleted from console

or device never

enrolled in provided

environment.

Device is not

Enrolled with any

WS1 UEM

Console. Cannot

complete

operation.

23 failedToSetupAccessControl When SDK failed to

unlock or SDK security

setup failure.

Device failed to

setup access

control.

24 applicationNotAssigned When app is not

assigned.

It appears this

app is not

assigned to your

device.

25 credentialsFetchFailed When SDK failed to

fetch certificates from

Server.

Error while

fetching

configured

certificates.

26 deviceAlreadyEnrolled Returns when SDK

already has enrollment

info.

Device is already

enrolled.

27 missingRequiredInformation OG or server URL

details not found.

Missing Required

Information.

Developer Guide

Workspace ONE for iOS (Swift) Page 81 of 82

Error

Code Error Name Possible reasons

Error

Description

28 nonAirWatchConsole When response

header doesn’t contain

a console-version.

Non AirWatch

Console.

29 enrollmentBlockedThroughExtension Trying to enroll SDK

with app extension.

Enrollment

blocked through

app extension.

30 enrollmentBlocked When customer app

tries to register

without enrolling

through HUB.

When customer

app tries to

register without

enrolling through

HUB.

31 sharedDeviceNotCheckedOut Trying to access app

without user login in

hub.

Shared Device

required

checkout before

being used.

32 serverIsNotReachableForRequiredSetup When SDK failed to

determine user CICO

status due to network

issue.

Server is not

reachable for

required setup.

33 policySigningCertFetchFailed SDK failed to fetch

NAIP policy signing

certificate from

console.

Policy Signing

Certificate Fetch

Failed.

34 applicationNotManaged When application does

not contain managed

settings.

Application not

managed.

35 enrollmentInfoNotMatched Enrollment Info

mismatched.

Enrollment info

not matched.

36 failedToFetchCrossClusterInfoFromAnchor App Attestation failed,

server not reachable.

Failed to fetch

cross cluster

information for

app.

37 crossClusterMisconfigurationFailure Two keychain sharing

apps should not

contain different cross

cluster configuration.

Cross cluster

mode invalid

setup.

38 userCancelledEnrollment When user cancels the

enrollment like

dismissing the enter

server URL screen.

User cancelled

Enrollment.

39 invalidServerDetails When server details

are not proper.

Invalid server

details.

Developer Guide

Workspace ONE for iOS (Swift) Page 82 of 82

Document Information

Revision History

30jun2020 Final for 20.6 SDK.

15sep2020 Update for 20.9 SDK.

16oct2020 Update for 20.10 SDK.

18nov2020 Update for 20.11 SDK.

21jan2021 Update for 21.1 SDK.

23feb2021 Update for 21.2 SDK.

25mar2021 Update for 21.3 SDK.

13apr2021 Update for 21.4 SDK.

17jun2021 Update for 21.6 SDK.

15jul2021 Update for 21.7 SDK.

17aug2021 Update for 21.8 SDK.

27sep2021 Update for 21.9 SDK.

26Oct2021 Update for 21.10 SDK.

26Nov2021 Update for 21.11 SDK.

19Jan2022 Update for 22.1 SDK.

23Feb2022 Update for 22.2 SDK.

23Mar2022 Update for 22.3 SDK.

20Apr2022 Update for 22.4 SDK.

31May2022 Update for 22.5 SDK.

06Jul2022 Update for 22.6 SDK.

08Aug2022 Update for 22.7 SDK.

09Sep2022 Update for 22.9 SDK.

18Oct2022 Update for 22.10 SDK. API correction for retrieving stored certificates

06Dec2022 Update for 22.11 SDK. Use of App Attestation

27Jan2023 Update for 23.1 SDK.

16Mar2023 Update for 23.3 SDK.

18Apr2023 Update for 23.04 SDK. Screen recording restriction and new endpoint to get compromised device detection rules

08Jun2023 Update for 23.06 SDK.

19Jul2023 Update for 23.07 SDK. New API to fetch SDK log chunks

11Sep2023 Update for 23.09 SDK. Restriction of Print based on DLP

31Oct2023 Update for 23.10 SDK.

14Dec2023 Update for 23.12 SDK.

29Jan2024 Update for 24.01 SDK.

15May2024 Update for 24.04 SDK.

01Jul2024 Update for 24.06 SDK. Support for Tunnel with WKWebView

06Aug2024 Update for 24.07 SDK.

30Sep2024 Update for 24.09 SDK. MAG Decommission

Legal
VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877–486–9273 Fax 650–427–5001 www.vmware.com
Copyright © 2024 VMware LLC. All rights reserved.
This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at https://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its
subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

https://www.vmware.com/go/patents

