
Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 1 of 62

Base Integration Guide

Workspace ONE for iOS and iPadOS
Applications for iOS and iPadOS can be integrated with the VMware Workspace

ONE® platform, by using its mobile software development kit. Complete the tasks

below as a base for feature integration.

This document is part of the Workspace ONE Integration Guide set.

Table of Contents
Welcome..2
Agreement..2

Compatibility..3

Task: Configure application properties..4

Task: Add the software development kit package..16

Task: Initialize the software development kit runtime...20

Task: Declare supported features..35

Task: Demonstrate Basic Features...40

Next Steps..50

Appendix: Callback Scheme Sample Code...51

Appendix: Troubleshooting..54

Appendix: Keychain Clearance Sample Code..60

Document Information...62

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 2 of 62

Welcome
Welcome to the Workspace ONE Base Integration Guide for iOS and iPadOS.

The objective of this guide is for you to complete initial integration of your app

with the Workspace ONE platform. This guide includes coding work.

Instructions in this guide assume that all the tasks in the Workspace ONE

Integration Preparation Guide for iOS and iPadOS are already complete.

The Integration Preparation Guide is available

in Markdown format, in the repository that also holds this guide:

github.com/vmware-samples/workspace-ONE-SDK-integration-samples.

in Portable Document Format (PDF), from the SDK home page on the VMware

developer website:

developer.vmware.com/web/sdk/Native/airwatch-ios.

Warning: Don’t change the bundle identifier. Your app must have the same

bundle identifier as it did when the Integration Preparation Guide was being

followed. This is because trust of the app by the Workspace ONE platform is

based in part on the bundle identifier. The Workspace ONE unified endpoint

manager (UEM) console and the Workspace ONE Intelligent Hub app are the

components that must trust your app.

The Integration Preparation Guide has some discussion of Apple accounts as they

pertain to Workspace ONE integration work, in an appendix.

Agreement
Before downloading, installing or using the VMware Workspace ONE Software

Development Kit (SDK) you must:

Review the VMware Workspace ONE Software Development Kit License

Agreement. By downloading, installing, or using the VMware Workspace ONE

SDK you agree to these license terms. If you disagree with any of the terms,

then do not use the software.

Review the VMware Privacy Notice and the Workspace ONE UEM Privacy

Disclosure, for information on applicable privacy policies.

That applies however you obtain or integrate the software.

https://github.com/vmware-samples/workspace-ONE-SDK-integration-samples
https://developer.vmware.com/web/sdk/Native/airwatch-ios
https://developer.vmware.com/docs/12215/WorkspaceONE_SDKLicenseAgreement.pdf
https://www.vmware.com/help/privacy.html
https://www.vmware.com/help/privacy/uem-privacy-disclosure.html

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 3 of 62

Compatibility
Instructions in this document are compatible with the following software versions.

Software Version

Workspace ONE software development kit for iOS 24.09

Workspace ONE UEM management console 2212 or later

Apple iOS and iPadOS 15 or later

Apple Xcode 15.x

The SDK supports versions of the Swift language that are supported by the

above Xcode versions.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 4 of 62

Task: Configure application properties
Configuring application properties is a Workspace ONE platform integration task

for mobile application developers. This task is dependent on all the tasks in the

Integration Preparation Guide, as discussed in the Welcome section. The following

instructions assume that the dependent tasks are complete already.

These are the required configurations.

The Workspace ONE Intelligent Hub app will use a custom URL scheme to send

enrollment details to your app. Therefore your app must declare a custom URL

scheme.

Particular Queried URL Schemes will be used to discover Hub communication

channels and must be declared by all SDK apps.

A Camera Usage Description must be declared by all SDK apps in order to

support Workspace ONE QR code enrollment. If a description isn’t declared

then the operating system blocks the app from access to the device camera.

A Face ID Usage Description must be declared in order to support face

recognition for biometric authentication. If a description isn’t declared then the

operating system blocks the app from access to Face ID. Note that no

declaration is needed for access to Touch ID.

Biometric authentication may be allowed in the Workspace ONE unified

endpoint manager (UEM) console, as a security policy. Therefore it must be

supported by all SDK apps.

Workspace ONE doesn’t support multiple windows at time of writing. If your

app has a scene manifest then it must declare that multiple windows aren’t

supported.

If you are developing more than one app, then add a shared keychain group

for secure inter-application communication. The shared keychain group must be

named asdk and be first in the Keychain Groups list.

You can set those configurations as you like if you are familiar with the Xcode

project user interface already. Skip ahead to the screen captures at the end of

the second and third sections for reference. Or you can follow these step-by-

step instructions.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 5 of 62

Declare a custom URL scheme
Start the Task: Configure application properties by declaring a custom URL

(Uniform Resource Locator) scheme for your app.

If you haven’t installed your application via Workspace ONE at least once, then

do so now. If you don’t, the application under development won’t work when

installed via Xcode. Instructions for installing via Workspace ONE can be found in

the Integration Preparation Guide discussed in the Welcome section.

To declare a custom URL scheme proceed as follows.

1. Open the application project in Xcode.

2. In the navigator select the project itself, and then the target that you’re using

for integration.

By default, the project itself will be the first item in the navigator, and each app

project has only a single target.

3. In the target editor, select the Info tab, and then expand the URL Types list.

By default the URL Types list is empty.

4. Click the plus button to add a URL Type.

This adds an Untitled item to the list.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 6 of 62

5. Enter a suitable value like ws1app in the URL Schemes text box.

The value will be used as the scheme in a URL (Uniform Resource Locator).

This means that it cannot include characters such as space, underscore, and

full stop (period).

None of the other fields matter for this task.

This screen capture shows how the added URL Type might appear in the

Xcode user interface.

Screen Capture: Xcode Target URL Types

6. Install and run the app on your developer device to confirm that no mistakes

have been made.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 7 of 62

7. Check that the custom URL scheme invokes the app.

First, terminate the app, for example by using the device task switcher.

If your device is synchronized with your computer, open the Apple Notes app

and create a new note. Add a URL like this to the note.

ws1app://dummypath

The URL has the value you entered in Xcode as the scheme, and has a dummy

path.

Wait for the note to synchronise to your developer device, typically only a

second or two, then open the mobile Notes app, open the note, and tap the

URL. What should happen is that your app is opened.

If your app doesn’t open then review the above instructions to check that no

mistakes were made. Also check any settings related to Info.plist in Xcode.

If your Notes aren’t synchronised you could instead open Safari on the device

and type the URL into the address bar. Safari should open your app.

That completes declaration of a custom URL scheme.

Xcode might or might not have added a visible property list file named Info.plist

to the project when you added an item to the URL Types list. It might or might

not be possible to have added the declaration and to add the other required

properties, below, by editing the Info.plist file. This guide assumes that it isn’t

possible.

Continue the task with the instructions Add Queried URL Schemes and other

required properties.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 8 of 62

Add Queried URL Schemes and other required
properties
After following the Declare a custom URL scheme instructions, add the other

required Workspace ONE properties.

Here are some tips for adding properties in Xcode.

App properties can be edited on the same screen as the custom URL scheme
is declared, see above, but in the Custom iOS Target Properties list.
When you right-click on a non-array key in the list, a context menu will appear.
That menu is referred to here as the properties context menu.
The list can show keys in either a raw form or in a wordy form. You can switch
between the two in the properties context menu.
Properties can be added by selecting the Add Row option in the properties
context menu.
After you add a row you first enter the key for the new property. The Xcode
helper for key entry here is case sensitive.
Properties of type Array or Dictionary can have sub-properties. Sub-properties
can be added by expanding the top-level property and then clicking the plus
button that appears.
Changes made in the property list can be reversed using the usual undo
interactions, Cmd+Z for example.

This is a list of the required Workspace ONE app properties and values. Keys are

given in raw form and wordy form.

LSApplicationQueriesSchemes Queried URL Schemes.
Array of String. Items can be in any order.
airwatch
AWSSOBroker2
awws1enroll
wsoneSDK

NSCameraUsageDescription Privacy - Camera Usage Description.
String “Scan QR codes” or something similar.
NSFaceIDUsageDescription Privacy - Face ID Usage Description.

String “Unlock the app” or something similar.
UIApplicationSceneManifest Application Scene Manifest.
Dictionary.
UIApplicationSupportsMultipleScenes Enable Multiple Windows.
Boolean NO

You can add those properties as you like if you are familiar with the editor already,

or follow these step-by-step instructions.

-

-
-
-

-

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 9 of 62

1. In Xcode, in the target editor, on the Info tab, expand the Custom iOS Target

Properties list.

2. Add a top-level property row with the key: Queried URL Schemes.

Raw equivalent is LSApplicationQueriesSchemes.

Ensure that the type of the property is Array, and the type of items in the

array is String. Those could be the defaults.

3. Add an item for each of these values to the new array.

airwatch

AWSSOBroker2

awws1enroll

wsoneSDK

This screen capture shows the new key and array as they appear in the Xcode

user interface.

Screen Capture: Xcode Queried URL Schemes

4. Add a top-level property row with the key: Privacy - Camera Usage

Description.

Raw equivalent is NSCameraUsageDescription.

Ensure that the type of the property is String. This should be the default.

Set the value to something like: “Scan QR codes”.

5. Add a top-level property row with the key: Privacy - Face ID Usage

Description.

Raw equivalent is NSFaceIDUsageDescription.

Ensure that the type of the property is String. This should be the default.

Set the value to something like: “Unlock the app”.

-

-

-

-

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 10 of 62

6. Check if your app has a top-level property row with the key: Application Scene

Manifest.

Raw equivalent is UIApplicationSceneManifest.

If your app doesn’t have this property you can skip the remaining steps.

This property will be of type Dictionary.

7. Expand the dictionary and find the sub-property row with the key: Enable

Multiple Windows.

Raw equivalent is UIApplicationSupportsMultipleScenes.

Ensure that the type of the sub-property is Boolean. This should be the

default.

Set the value to: NO.

That completes the configuration of application properties. This screen capture

shows how the target Info tab could look.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 11 of 62

Screen Capture: Xcode target Info tab

If you haven’t installed your application via Workspace ONE at least once, then

do so now. If you don’t, the application under development won’t work when

installed via Xcode. Instructions for installing via Workspace ONE can be found in

the Integration Preparation Guide discussed in the Welcome section.

Build and run the application from Xcode to confirm that no mistakes have been

made.

You are now ready to proceed to either of the following.

The instructions to Add a shared keychain group if you are developing more
than one custom app.

The next Task: Add the software development kit package if you are
developing a single app at this time.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 12 of 62

Add a shared keychain group
The instructions to add a shared iOS keychain group may be followed after those

in the other sections in the Task: Configure application properties, but are

optional. An iOS shared keychain group is only required if you have multiple

custom SDK apps that work together as a suite.

If you add a shared keychain group then the apps in the suite

must be signed by the same app developer team.

can share an app single sign-on (SSO) session, if configured in the management
console security policies.

can exchange data securely, via the pasteboard for example.

To add a shared keychain group proceed as follows.

1. In Xcode, in the target editor, select the Signing & Capabilities tab.

2. Click the plus button to add a capability.

This screen capture shows the location in the Xcode user interface.

Screen Capture: Xcode Add App Capability

This opens a dialog on which you can select a capability.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 13 of 62

3. Search for, or scroll to, the capability Keychain Sharing.

This screen capture shows how it might appear in the Xcode user interface.

Screen Capture: Xcode Keychain Sharing

4. Double click on Keychain Sharing.

This closes the capability selection dialog. You will be returned to the Xcode

target editor. The capability Keychain Sharing has now been added to your

app.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 14 of 62

5. Click the plus button under the prompt to Add keychain access groups here.

This screen capture shows the location in the Xcode user interface.

Screen Capture: Xcode Add First Keychain Group

That adds a keychain group with the same name as your app’s bundle

identifier. This screen capture shows it might appear in the Xcode user

interface.

Screen Capture: Xcode Keychain Group Added

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 15 of 62

6. Change the name of the keychain group to awsdk.

You can double click on the name of the new group to edit it.

That completes the addition of a shared iOS keychain group.

This screen capture shows it might appear in the Xcode user interface.

Screen Capture: Xcode Keychain Groups

Build and run the application to confirm that no mistakes have been made.

Warnings:

Never delete the awsdk group.

Don’t use the awsdk group in your apps. The group must be left for exclusive
use by the SDK.

If you add another keychain group for your apps to use, the awsdk group must
always be first in the list.

Keychain group access can only be shared between apps signed by the same
developer team.

You are now ready to proceed to the next Task: Add the software development

kit package.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 16 of 62

Task: Add the software development kit package
Adding the SDK package is a Workspace ONE platform integration task for

mobile application developers. This task can be done after the Task: Configure

application properties. These instructions assume that task is complete already.

If you haven’t installed your application via Workspace ONE at least once, then

do so now. If you don’t, the application under development won’t work when

installed via Xcode. Instructions for installing via Workspace ONE can be found in

the Integration Preparation Guide discussed in the Welcome section.

Proceed as follows to add the SDK package.

1. Open the application project in Xcode.

2. In the Xcode menu select File, Add Packages…

This opens a first add package dialog. The dialog has a search control at the

top. This screen capture shows the location of the search control.

Screen Capture: Xcode Swift Package Search

The prompt is Search or Enter Package URL. (URL is an abbreviation for

Uniform Resource Locator.)

3. Select the search control and paste in the URL for the Workspace ONE SDK

Swift Package.

https://github.com/vmwareairwatchsdk/iOS-WorkspaceONE-SDK

The add package dialog changes to show controls for specifying the package

version.

4. Select Dependency Rule: Exact Version and 23.3.0 as the parameter, or other

values if preferred.

You can check the latest version by opening the package URL and then

opening the list of tags. The package uses Git tags for SDK versions.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 17 of 62

5. Select Add to Project: ws1app or your app name if it isn’t selected by default,

and then select Add Package.

This screen capture shows the location of the selections in the Xcode user

interface.

Screen Capture: Xcode Swift Package Add

Xcode will fetch and verify the contents of the package. When it finishes, a

package product selection dialog is displayed.

6. In the dialog select to add the library AWSDK to the target for your app.

Those selections could be the default and are shown in this screen capture.

Screen Capture: Xcode Choose Package Products

When the selections are as required, click the Add Package button.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 18 of 62

7. Check that the package has been added to the app project and to the target.

In the Xcode project navigator select the project itself and then the tab

Package Dependencies. Check that the Workspace ONE SDK appears. This

screen capture shows how this appears in the Xcode user interface.

Screen Capture: Xcode Package Dependencies

Then, in the Xcode project navigator select the app target that you’re using

for integration, and then the tab General and expand the Frameworks,

Libraries, and Embedded Content list. Check that AWSDK appears. This screen

capture shows how this appears in the Xcode user interface.

Screen Capture: Xcode Target Link Frameworks, Libraries, and Embedded Content

Still in the app target, select the tab Build Phases and expand the Link Binary

With Libraries list. Check that AWSDK appears. This screen capture shows how

this appears in the Xcode user interface.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 19 of 62

Screen Capture: Xcode Target Link Build Libraries

This completes adding the software development kit to the application. Build the

application to confirm that no mistakes have been made, and to force Xcode to

recognize the package’s module for import. After that, continue with the next

Task: Initialize the software development kit runtime.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 20 of 62

Task: Initialize the software development kit runtime
Initializing the SDK runtime is a Workspace ONE platform integration task for

mobile application developers. This task is dependent on the Task: Add the

software development kit package. The following instructions assume that the

dependent task is complete already.

Before you begin, you will need to know the Team ID of your Apple developer

account. Instructions for locating the required value can be found on the Apple

developer website, for example here.

developer.apple.com/help/account/manage-your-team/locate-your-team-id

Note that your app must have the same bundle identifier as it did when the

Integration Preparation Guide was being followed, as discussed in the Welcome

section. This could mean that you must continue to use the same Team ID also.

How you initialize the SDK runtime depends on how the app user interface is

implemented.

If the app user interface is implemented in SwiftUI, follow the Initialize from

SwiftUI instructions.

If the app user interface is implemented in a storyboard, follow the Initialize

from Storyboard instructions.

Initialize from SwiftUI
If the app user interface is implemented in SwiftUI, you can follow these

instructions to start the Task: Initialize the software development kit runtime. The

instructions assume that all dependencies of that task are completed already.

These instructions are intended to meet general requirements for Workspace

ONE integration. They should be easy to adapt to your own specific requirements

if needed.

Proceed as follows.

https://developer.apple.com/help/account/manage-your-team/locate-your-team-id

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 21 of 62

Add a helper class
Start by adding a helper class that can interface between SwiftUI and the

Workspace ONE SDK.

1. Open the application project in Xcode and add a new Swift class.

For example by right-clicking on the project and selecting New File… in the

context menu that appears. Then selecting Swift File in the template chooser.

2. Add the helper class.

This can be a singleton class. It should conform to these interfaces.

NSObject as usual.

AWControllerDelegate for the SDK side of the interface.

ObservableObject for the SwiftUI side of the interface.

The top of the class file could look like this.

import AWSDK

class WorkspaceONEHelper:
 NSObject, AWControllerDelegate, ObservableObject
{
 // Singleton class.
 private override init() { super.init() }
 static var shared: WorkspaceONEHelper = .init()

 // Rest of the class will go here.
}

3. Implement a helper callback that is invoked when the SDK finishes initialization.

The callback is the controllerDidFinishInitialCheck(error:) function

and is required by the declared SDK protocol.

You may add @Published variables to the helper so that the initialized status

can be made visible in the app user interface.

The code could look like this.

@Published var sdkMessage: String = "SDK uninitialised."
func controllerDidFinishInitialCheck(error: NSError?) {
 // Good spot for a debug checkpoint.
 if let nsError = error {
 sdkMessage = "controllerDidFinishInitialCheck failed \(nsError)."
 }
 else {
 sdkMessage = "controllerDidFinishInitialCheck OK."
 }
 print(sdkMessage)
}

-

-

-

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 22 of 62

4. Add a helper function to start the SDK, and an instance variable to enforce

that the SDK is only started once.

To start the SDK, do the following.

1. Access the AWController singleton through the clientInstance() class

function.

2. Set the callbackScheme to the URL Type added in the Declare a custom

URL scheme instructions.

You can do this by adding code to read the app properties. For an example

see the Appendix: Callback Scheme Sample Code.

3. Set the teamID to the team identifier used to build the app.

Instructions for locating the required value can be found on the Apple

developer website, for example here.

developer.apple.com/help/account/manage-your-team/locate-your-team-id

4. Set the controller delegate to the helper instance.

5. Initialize the SDK by calling the controller start() function.

The code could look like this.

@Published var appMessage: String = "App uninitialised."
var sdkStarted = false
func startSDK()
{
 appMessage = "startSDK() \(sdkStarted)."
 print(appMessage)

 guard !sdkStarted else { return }
 sdkStarted = true

 // Access the AWController singleton.
 let awController = AWController.clientInstance()

 // Set the callback scheme to the custom URL Type.
 do {
 awController.callbackScheme = try schemeForWS1()
 }
 catch {
 appMessage = "schemeForWS1() failed \(error)."
 print(appMessage)
 return
 }

 // Set the team identifier.
 awController.teamID = "YOUR1TEAM2IDENTIFIER2HERE"

 // Set the controller delegate to the helper instance.
 awController.delegate = self

 // Actually initialize the SDK.
 awController.start()
}

https://developer.apple.com/help/account/manage-your-team/locate-your-team-id

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 23 of 62

5. Add a helper function to pass open URL requests to the SDK handler.

The SDK will process open URL requests from Hub during enrollment. This is

discussed in the introduction to the Task: Configure application properties.

The code could look like this.

func handleOpen(url: URL, fromApplication: String?) -> Bool {
 return AWController.clientInstance()
 .handleOpenURL(url, fromApplication: fromApplication)
}

Build the application to ensure that no mistakes have been made. Then continue

with the next instructions.

Connect the helper
Continue by connecting the helper class to the app code and user interface.

These instructions assume your application code has a structure like this.

Content view struct that conforms to the SwiftUI View protocol.

App main struct that conforms to the SwiftUI App protocol and declares the

Content view in a WindowGroup.

(If your structure is different you can adapt these instructions.)

Proceed as follows.

1. Connect the helper to your Content view.

Add an @ObservedObject variable to the Content view. The variable will be an

instance of the helper. The code could look like this.

@ObservedObject var sdkHelper: WorkspaceONEHelper

2. Add, for example, Text instances to the Content view to show the published

variables from the helper.

The code could look like this.

var body: some View {
 VStack {
 Text(self.sdkHelper.sdkMessage).font(.title2)
 Text(self.sdkHelper.appMessage).font(.title2)
 }
 .padding()
}

At this point the app won’t build because declaring the observed object

requires a parameter in the Content view instantiation.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 24 of 62

3. Update the Content view instantiation in your App main.

Pass the singleton instance of the helper to the Content view. The code could

look like this.

ContentView(sdkHelper: WorkspaceONEHelper.shared)

4. In your App main, connect the helper open URL handler to the Content view.

Add an onOpenURL to the Content view instantiation. The onOpenURL should

first call the helper function, which returns a Boolean value for whether it

handled the URL. The code could look like this.

ContentView(sdkHelper: WorkspaceONEHelper.shared)
 .onOpenURL { url in
 if WorkspaceONEHelper.shared.handleOpenURL(
 url: url, sourceApplication: nil
) { return }

 print("URL not handled by WS1 \(url)")
 // App handling of url goes here.
 }

5. Initialize the SDK from your App main.

In your App main, add a scene phase listener to the WindowGroup. In the

listener, if the scene phase is active then call the singleton helper function to

initialize the SDK. The code could look like this.

@Environment(\.scenePhase) private var scenePhase

var body: some Scene {
 WindowGroup {
 // Other code was added here in the preceding instructions.
 }
 .onChange(of: scenePhase) {phase in
 if phase == .active {
 WorkspaceONEHelper.shared.startSDK()
 }
 }
}

Note. An alternative to a scene phase listener could be to implement

@UIApplicationDelegateAdaptor and call the SDK initialization helper from

its didFinishLaunchingWithOptions callback. However, that type of

adaptor shouldn’t be used according to the reference documentation. See the

Apple developer website here for example.

developer.apple.com/documentation/swiftui/uiapplicationdelegateadaptor

This completes SDK initialization from SwiftUI. Now follow the instructions to Test

runtime initialization.

https://developer.apple.com/documentation/swiftui/uiapplicationdelegateadaptor

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 25 of 62

Initialize from Storyboard
If the app user interface is implemented in a Storyboard, you can follow these

instructions to start the Task: Initialize the software development kit runtime. The

instructions assume that all dependencies of that task are completed already.

These instructions are intended to meet general requirements for Workspace

ONE integration. They should be easy to adapt to your own specific requirements

if needed.

Proceed as follows.

Update the app delegate
Start by extending your app delegate class so that it will start and control the

Workspace ONE SDK.

1. Open the application project in Xcode and then the class that implements the

app delegate.

By default the app delegate class is named AppDelegate and will be in the

AppDelegate.swift file.

The required class will implement the UIApplicationDelegate protocol and

might be annotated as the main entry point of the app.

2. Declare the app delegate as implementing the Workspace ONE SDK controller

delegate protocol.

To do that

add an import statement for AWSDK

add the AWControllerDelegate protocol to the app delegate’s
declaration.

The top of the class file could look like this.

import UIKit
import AWSDK

@main
class AppDelegate: UIResponder, UIApplicationDelegate, AWControllerDelegate {

 // Rest of the class here.

}

-

-

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 26 of 62

3. Add code to start the SDK when the app is launched.

To start the SDK, do the following.

1. Access the AWController singleton through the clientInstance() class

function.

2. Set the callbackScheme to the URL Type added in the Declare a custom

URL scheme instructions.

You can do this by adding code to read the app properties. For an example

see the Appendix: Callback Scheme Sample Code.

3. Set the teamID to the team identifier used to build the app.

Instructions for locating the required value can be found on the Apple

developer website, for example here.

developer.apple.com/help/account/manage-your-team/locate-your-team-id

4. Set the controller delegate to the app delegate instance.

5. Initialize the SDK by calling the controller start() function.

In case you want to display a status message, you can add a suitable variable

that can be observed from another class.

The code could look like this.

https://developer.apple.com/help/account/manage-your-team/locate-your-team-id

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 27 of 62

@objc dynamic var appMessage = "App uninitialised."

func application(
 _ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions: [
 UIApplication.LaunchOptionsKey: Any
]?) -> Bool
{
 // Override point for customization after application launch.

 let awController = AWController.clientInstance()

 // Set the callback scheme to the custom URL Type.
 do {
 awController.callbackScheme = try schemeForWS1()
 appMessage = "schemeForWS1() OK \"\(awController.callbackScheme)\"."
 print(appMessage)
 }
 catch {
 appMessage = "schemeForWS1() failed \(error)."
 print(appMessage)
 return false
 }

 // Set the team identifier.
 awController.teamID = "YOUR1TEAM2IDENTIFIER2HERE"

 // Set the controller delegate to the helper instance.
 awController.delegate = self

 // Actually initialize the SDK.
 awController.start()

 return true
}

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 28 of 62

4. Make the app delegate conform to the Workspace ONE SDK controller

delegate protocol.

To conform, implement the callback controllerDidFinishInitialCheck.

Best practice would be to do this in your implementation.

If SDK initialization failed, show an error message and block all or part of the
app user interface.

If SDK initialization succeeded, don’t block the app user interface.

In case you want to display a status message, you can add a suitable variable

that can be observed from another class.

The code could look like this.

@objc dynamic var sdkMessage = "SDK uninitialised."

func controllerDidFinishInitialCheck(error: NSError?) {
 // Good spot for a debug checkpoint.
 if let nsError = error {
 sdkMessage = "controllerDidFinishInitialCheck failed \(nsError)."
 }
 else {
 sdkMessage = "controllerDidFinishInitialCheck OK."
 }

 print(sdkMessage)
}

Build the application to ensure that no mistakes have been made. Then continue

with the next instructions.

Update the scene delegate
The SDK will process open URL requests from Hub during enrollment. This is

discussed in the introduction to the Task: Configure application properties.

URL requests will be received in the scene delegate, which must be modified to

convey the required URL requests to the SDK.

Proceed as follows.

1. Open the application project in Xcode and then the class that implements the

scene delegate.

By default the scene delegate class is named SceneDelegate and will be in

the SceneDelegate.swift file.

The required class will implement the UIWindowSceneDelegate protocol.

-

-

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 29 of 62

2. Add an open URL handler that conveys requests to the SDK handler.

To do this, implement the scene(_:openURLContexts:) callback. The

reference documentation for that callback can be found on the Apple

developer website, for example here.

developer.apple.com/…/uiscenedelegate/…

To convey open URL requests, do the following.

1. Add an import statement for AWSDK.

2. Access the AWController singleton through the clientInstance() class
function.

3. Invoke the handleOpenURL() method for each URL context received.

4. If the method returns true, the SDK has handled the open URL request.

5. Otherwise, the app should handle the request.

The code could look like this.

// Other imports here, such as UIKit
import AWSDK

class SceneDelegate: UIResponder, UIWindowSceneDelegate {

 var window: UIWindow?

 func scene(
 _ scene: UIScene, openURLContexts URLContexts: Set<UIOpenURLContext>
) {
 for context in URLContexts {
 if AWController.clientInstance().handleOpenURL(
 context.url, fromApplication: context.options.sourceApplication
) { continue }

 print("URL not handled by WS1 \(context.url)")
 // App handling of url goes here.
 }
 }

This completes SDK initialization from Storyboard. Now follow the instructions to

Test runtime initialization.

https://developer.apple.com/documentation/uikit/uiscenedelegate/3238059-scene

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 30 of 62

Test runtime initialization
Test initialization of the SDK runtime after completing either the Initialize from

SwiftUI instructions or the Initialize from Storyboard instructions.

Build and run the application.

First Launch App Enrollment
The first time the app is launched it will have to enroll with the UEM. The SDK

runtime will first retrieve some enrollment details from Hub. That retrieval will

require the device user interface to flip to Hub and then back to your app. Then

the end user must authenticate to UEM in order to complete app enrollment.

These screens and user interfaces should appear in order.

1. SDK splash screen.

Screen Capture: SDK Splash Screen for iOS

The splash screen might appear only briefly.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 31 of 62

2. Open Hub confirmation.

Screen Capture: Open Hub confirmation

This is an operating system prompt. Tap Open to continue enrollment by

opening Hub.

3. The device user interface flips to the Hub app.

Hub might require authentication of the end user, for example by entering an

app passcode.

After authentication, if any, the device user interface flips back to your app.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 32 of 62

4. Authenticate to enroll.

The appearance of this screen depends on UEM configuration. If basic

authentication is configured then the screen could look like this.

Screen Capture: Authenticate to enroll

If Security Assertion Markup Language (SAML) is configured then a web view

will open instead. The web view will display an enterprise authentication page.

The operating system adds an option to go back to Hub at the top left of the

screen. Ignore that option.

Enter the credentials of the user account, which will be the same as used to

enroll the Hub app during Preparation.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 33 of 62

5. Create app passcode, if required.

Depending on UEM security policy configuration, you may be required to set

and confirm an app passcode. This is a new separate passcode to the

password that was used to enroll the app and Hub. The app passcode is only

used on the device. The device doesn’t require an internet connection to

check the app passcode.

The first screen of the interaction looks like this.

Screen Capture: Create app passcode

Set and confirm an app passcode to continue.

6. App user interface.

When app enrollment has completed, the app user interface will open. The

controllerDidFinishInitialCheck callback that you implemented in the

previous instructions will be invoked.

The first app launch, and app enrollment, are now complete. If the steps didn’t

play out as above, or if an error was passed to the initial check callback, check

the tips in the Appendix: Troubleshooting and review the earlier instructions.

Otherwise, terminate the app and launch it again.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 34 of 62

Subsequent Launch
The second and subsequent times the app is launched these screens and user

interfaces should appear.

1. SDK splash screen as in the first launch, perhaps only briefly.

2. Enter app passcode, if required.

If the UEM security policy configuration required that an app passcode was

created, then you may be prompted to enter the passcode when the app

launches. The screen could look like this.

Screen Capture: Enter app passcode

Passcode entry isn’t always required. A full discussion is out of scope of this

guide but note the following scenarios.

App single sign-on (SSO) can be configured in the UEM security policies.
Entering the app passcode in a one app then starts an authentication session
that other apps join without requiring the app passcode to be entered.

If the app was recently active and hasn’t been terminated then the app
passcode won’t be required when the app returns to foreground.

3. App user interface.

When authentication, if any, has completed, the app user interface will open.

The controllerDidFinishInitialCheck callback that you implemented in

the previous instructions will be invoked.

When you have verified first launch and subsequent launch, you are ready to

continue with the next Task: Declare supported features.

-

-

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 35 of 62

Task: Declare supported features
Declaring supported features is a Workspace ONE platform integration task for

mobile application developers. This task is dependent on the Task: Initialize the

software development kit runtime. The following instructions assume that the

dependent task is complete already.

Declare the Workspace ONE features that your app supports by creating a

resource bundle and property list. Proceed as follows.

1. Open your app project in Xcode.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 36 of 62

2. Create a Settings Bundle named AWSDKDefaults.bundle.

(In this guide, the bundle will be created in the application resources. The

bundle can instead be in a sub-group or in a package that has been added to

the application.)

One way to create the bundle is as follows.

1. In the Xcode navigator select the project itself.

By default, the project itself will be the first item in the navigator.

2. In the Xcode menu, select File, New, File…

This opens a template selection interaction.

3. Select the template: Settings Bundle.

The template can appear in the Resource category. You can also search for

it by filtering, for example for “bundle”.

Select the plain Settings Bundle template, not the WatchKit Settings Bundle

template.

4. Click Next. A file save dialog will open.

5. Enter the name AWSDKDefaults.bundle and select to save in the top

group of the project.

This screen capture shows how the save dialog might look.

Screen Capture: Xcode create bundle

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 37 of 62

The new bundle will be added to the resources that are copied into the app.

You can check this in the target build phases, in the Copy Bundle Resources

list. If it doesn’t appear there, add it now by clicking the plus.

This screen capture shows the bundle in the Xcode user interface.

Screen Capture: Xcode bundle in build phases

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 38 of 62

3. Create a property list named AWSDKDefaultSettings.plist in the bundle.

One way to do this is as follows.

1. In the Xcode navigator select the project itself.

By default, the project itself will be the first item in the navigator.

2. In the Xcode menu, select File, New, File…

This opens a template selection interaction.

3. Select the template: Property List.

The template can appear in the Resource category. You can also search for

it by filtering, for example for “property”.

4. Click Next. A file save dialog will open.

5. Enter the name AWSDKDefaultSettings.plist and select to save in the

AWSDKDefaults.bundle group.

This screen capture shows how the save dialog might look.

Screen Capture: Xcode create property list

The new property list file will be added to the bundle.

If you save the property list somewhere else by mistake, you can drag and

drop it into the bundle to fix it.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 39 of 62

4. Add a first key to the property list, to declare support for the Workspace ONE

secure pasteboard.

1. Open the AWSDKDefaultSettings.plist file as a property list.

2. Add to the Root Dictionary a new row as follows.

Key Type Value

AWClipboardEnabled Boolean YES

This screen capture shows how the property list might look after adding the

first key.

Screen Capture: Xcode declare secure pasteboard

That completes the initial declaration of supported features. Build and run the

application to confirm that no mistakes have been made. You are now ready to

continue with the Task: Demonstrate Basic Features.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 40 of 62

Task: Demonstrate Basic Features
The following basic features are now integrated into your application and can be

demonstrated. In most cases the policies and settings in the UEM must be

configured to activate features in the SDK. Brief instructions for application

developers are given here for convenience. Full documentation can be found in

the online help and product documentation.

Authentication of the end user
The end user can be forced to authenticate

when the app opens for the first time after the device is switched on.

after an inactivity time out has expired.

Authentication can be by entry of their domain username and password, or by a

separate app passcode that they create on the device.

This feature can be configured in the Organization Group (OG). This screen

capture shows the location of the setting in the console user interface.

Screen capture: Organization group end user authentication settings in the console

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 41 of 62

This feature can also be configured in a custom SDK Profile. These screen

captures show how to navigate to SDK Profile management in the console user

interface, and the location of the setting in the profile editor.

Screen capture: SDK Profile management in the console

Screen capture: Custom profile end user authentication settings in the console

Notes on this feature.

If Authentication Type is set to Disabled then the feature is deactivated.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 42 of 62

There is an additional option to Use Device Pin for Authentication. If this option

is selected then the end user can authenticate by entering the passcode that

they use to unlock their device. See the Require Device Passcode Technical

Brief, here developer.vmware.com/docs/17711/RequireDevicePasscode.pdf for

details.

There is an additional option for Biometric Mode authentication. If this option is

selected then the end user can authenticate by Touch ID or Face ID.

There is an additional option for Single Sign-On. If this option is selected then

the same passcode will be used by all apps that have access to a shared

keychain group. See also the Add a shared keychain group instructions.

Access to the app offline
The end user can be blocked from access to the app offline. If offline access is

blocked then the app user interface will be blocked by an informative error

message when the device is offline. That can be tested by engaging flight mode

for example.

This feature can be configured in the Organization Group (OG). This screen

capture shows the location of the setting in the console user interface.

Screen capture: Organization group offline access setting in the console

This feature can also be configured in a custom SDK Profile. This screen capture

shows the location of the setting in the profile editor.

https://developer.vmware.com/docs/17711/RequireDevicePasscode.pdf

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 43 of 62

Screen capture: Custom profile offline access setting in the console

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 44 of 62

Device compromise protection
Device compromise is the deactivation of the built-in security features of a mobile

device operating system. It is commonly referred to as jailbreaking, if applied to

iOS and iPadOS devices. Device compromise increases the vulnerability of

enterprise data on the device to unauthorized access, either by accidental

leakage or by deliberate attack.

The SDK can protect enterprise data by wiping its credentials and encryption

keys when device compromise is detected. The SDK will also report device

compromise to the UEM.

This feature can be configured in the Organization Group (OG). This screen

capture shows the location of the setting, Compromised Protection, in the

console user interface.

Screen capture: Organization group device compromise protection setting in the console

This feature can also be configured in a custom SDK Profile. This screen capture

shows the location of the setting in the profile editor.

Screen capture: Custom profile device compromise protection setting in the console

To demonstrate this feature on iOS or iPadOS you would have to jailbreak the

device. Instructions aren’t provided.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 45 of 62

Logging
Log files written by the SDK can be uploaded to the UEM console to aid in

diagnosis of problems.

To request logs proceed as follows.

1. Log in to the UEM and select the Organization Group (OG) of the end user that

you are using for development.

2. Navigate to Devices, List View.

3. Locate your developer device in the list and click to open the Details View.

4. In the details view, select the Apps tab.

5. Locate your app in the list of apps that appears and select its row.

This screen capture shows how the screen looks after selection of the app.

Screen capture: App on device selected in the console

6. Click the Request Logs button that appears.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 46 of 62

On your device, open the app. If the app was already running then terminate it

using the device task manager first. That ensures the app will contact the UEM

and receive the log request now.

To check the upload proceed as follows.

1. Navigate to the Details View of the device, same as in the above instructions.

2. Open the Attachments tab, which could be behind a More drop-down.

This screen capture shows the location in the console user interface.

Screen capture: Selecting device attachments

3. On the Attachments tab, select the Documents sub-tab.

The files appear with description App Log. This screen capture shows how the

screen appears.

Screen capture: Device attachments documents tab in the console

Download a log file zip archive to view the contents.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 47 of 62

On-device app compliance enforcement
The SDK has an app compliance feature that can enforce conditions like the

following.

Minimum application version.

Application cannot be inactive beyond a number of days.

Minimum operating system version.

This is a separate feature to the UEM Compliance Policies engine, which is much

broader in scope.

The SDK App Compliance feature can be configured in the Organization Group

(OG). This screen capture shows the location of the setting in the console user

interface.

Screen capture: Organization group SDK app compliance in the console

(Ignore the Security Patch Date, which only applies to Android.)

SDK App Compliance will be enforced on managed and unmanaged devices, and

doesn’t require the device to be online at the point of enforcement.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 48 of 62

Protected pasteboard
The protected pasteboard is a Workspace ONE data loss prevention feature

implemented by the SDK. The feature has the following parts.

Outbound protection, in which data copied from an SDK app cannot be pasted
into a non-SDK app.
Inbound protection, in which data copied from a non-SDK app cannot be
pasted into an SDK app.

The feature can be configured in the Organization Group (OG). This screen

capture shows the location of the setting in the console user interface.

Screen capture: Organization group data loss prevention settings in the console

This feature can also be configured in a custom SDK Profile. This screen capture

shows the location of the setting in the profile editor.

Screen capture: Custom profile data loss prevention settings in the console

Support for the protected pasteboard requires build-time configuration in the

mobile app. For instructions see the Task: Declare supported features.

Further integrations

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 49 of 62

Those are some basic feature that can be demonstrated already. For further

integrations, see the Next Steps.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 50 of 62

Next Steps
When you have completed all the above tasks, base integration is complete. You

can now integrate further Workspace ONE features, such as these.

App data at rest encryption.

Data loss prevention measures beyond the pasteboard.
Screen capture detection.

Third party keyboard blocking.

Camera access blocking.

User interface watermarking.

Printing blocking.

Data backup blocking.

Networking.

Branding.

Some of those features will require only build-time configuration; others will

require code changes.

See the home page of the Workspace ONE SDK for iOS and iPadOS for links to

other developer guides and resources.

https://developer.vmware.com/web/sdk/Native/airwatch-ios

-

-

-

-

-

-

https://developer.vmware.com/web/sdk/Native/airwatch-ios

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 51 of 62

Appendix: Callback Scheme Sample Code
This code can be used to read the declared URL Type list to discover or check

the callback scheme for Workspace ONE integration. For sample usage of this

code, see either of these sets of instructions.

Initialize from SwiftUI.

Initialize from Storyboard.

The sample code is also published here.

github.com/vmware-samples/…/SchemeCheck.swift

// Copyright 2023 VMware, Inc.
// SPDX-License-Identifier: BSD-2-Clause

import Foundation

private let CFBundleURLTypes = "CFBundleURLTypes"
private let CFBundleURLSchemes = "CFBundleURLSchemes"
private let path = "://dummypath"

/// Get the scheme of the first declared URL Type.
///
/// This function returns the declared scheme on success, or throws an
/// error for any failure.
///
/// - Throws: If the URL Type list is empty, or any properties are missing,
/// or the value in the declaration can't be a URL scheme.
/// - Returns: String containing the scheme of the first URL Type.
func schemeForWS1() throws -> String {
 return try
 Bundle.main.urlTypes().first!.schemes().first!.validateAsURLScheme()
}

/// Checks if a specified scheme is in any declared URL Type.
///
/// This function returns the specified scheme on success, or throws an
/// error for any failure.
///
/// - Parameter expectedScheme: String containing the scheme.
/// - Throws: If the URL Type list is empty, or any properties are missing,
/// or if the specified value can't be found, or if the specified value
/// can't be a URL scheme.
/// - Returns: The expectedScheme parameter.
func schemeForWS1(_ expectedScheme:String) throws -> String {
 var discoveredSchemes:[String] = []
 for urlType in try Bundle.main.urlTypes() {
 for scheme in try urlType.schemes() {
 if scheme == expectedScheme {
 return try expectedScheme.validateAsURLScheme()
 }
 discoveredSchemes.append(scheme)
 }
 }

 throw NSError(domain: "", code: 9, userInfo: [
 NSLocalizedDescriptionKey:"Expected scheme \"\(expectedScheme)\""
 + " not found in main bundle URL Types."
 + " Schemes found \(discoveredSchemes.count): "
 + discoveredSchemes.joined(separator: " ")
 + "."

https://github.com/vmware-samples/workspace-ONE-SDK-integration-samples/blob/main/IntegrationGuideForiOS/Guides/23BaseIntegration/21Appendix_Callback-Scheme-Sample-Code/SchemeCheck.swift

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 52 of 62

])
}

private extension Bundle {
 func urlTypes() throws -> [[String:Any]] {
 guard let infoDictionary = self.infoDictionary else {
 throw NSError(domain: "", code: 1, userInfo: [
 NSLocalizedDescriptionKey:"Main bundle has no infoDictionary"
]) }
 guard let typesAny = infoDictionary[CFBundleURLTypes] else {
 throw NSError(domain: "", code: 2, userInfo: [
 NSLocalizedDescriptionKey:"No \(CFBundleURLTypes) in main bundle"
 + ". Keys \(infoDictionary.keys.count): "
 + infoDictionary.keys.joined(separator: " ")
]) }
 guard let typesArray = typesAny as? [[String:Any]] else {
 throw NSError(domain: "", code: 3, userInfo: [
 NSLocalizedDescriptionKey:
 "Couldn't cast [\(CFBundleURLTypes)] to [[String:Any]]."
 + " " + String(describing: typesAny)
]) }
 guard let _ = typesArray.first else {
 throw NSError(domain: "", code: 4, userInfo: [
 NSLocalizedDescriptionKey:
 "[\(CFBundleURLTypes)] is an empty array."
]) }
 return typesArray
 }
}

private extension Dictionary where Key == String {
 func schemes() throws -> [String] {
 guard let schemesAny = self[CFBundleURLSchemes] else {
 throw NSError(domain: "", code: 5, userInfo: [
 NSLocalizedDescriptionKey:
 "The " + CFBundleURLTypes + " dictionary has no "
 + CFBundleURLSchemes + ". Keys \(self.keys.count): "
 + self.keys.joined(separator: " ")
]) }
 guard let schemes = schemesAny as? [String] else {
 throw NSError(domain: "", code: 6, userInfo: [
 NSLocalizedDescriptionKey:
 "Couldn't cast " + CFBundleURLSchemes + " to [String]. "
 + String(describing: schemesAny)
]) }
 guard let _ = schemes.first else {
 throw NSError(domain: "", code: 7, userInfo: [
 NSLocalizedDescriptionKey:
 "First " + CFBundleURLSchemes + " is an empty array."
]) }
 return schemes
 }

}

private extension String {
 func validateAsURLScheme() throws -> String {
 // Create a URL from the unchecked scheme to validate it. Note that URL
 // creation itself will succeed if the scheme is invalid but the .scheme
 // property will be nil.
 guard let _ = URL(string:self.appending(path))?.scheme else {
 let message = self.contains("_")
 ? " Scheme contains underscore _, which isn't allowed."
 : ""
 throw NSError(domain: "", code: 8, userInfo: [
 NSLocalizedDescriptionKey:
 "Scheme \"" + self

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 53 of 62

 + "\" can't be used to construct a URL." + message
])
 }
 return self
 }
}

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 54 of 62

Appendix: Troubleshooting
In case of difficulty when following the instructions to Test runtime initialization,

check these troubleshooting tips first.

Tips that mention flipping to Hub only apply to initial enrollment of the app.

Subsequent launches after enrollment has finished don’t require a flip to Hub.

OpenURLRequestFailed error and no flip to Hub
It could happen that the device doesn’t flip to Hub and the initial check callback

receives an OpenURLRequestFailed error.

The full error could appear like one of these.

controllerDidFinishInitialCheck failed (extension in AWSDK):
AWError.AWError.SDK.OpenURLRequestFailed.airWatchApplicationNotInstalled.

controllerDidFinishInitialCheck failed (extension in AWSDK):
AWError.AWError.SDK.OpenURLRequestFailed.airWatchApplicationSchemeNotInAllowedLists.

Check the app property LSApplicationQueriesSchemes (Queried URL

Schemes) is present and has all the required items.

The Add Queried URL Schemes and other required properties instructions list the

required items and how to configure them.

No flip back from Hub
It could happen that the device flips to Hub but doesn’t flip back to your app and

the initial check callback isn’t invoked.

Check that the custom URL scheme is registered correctly.

Instructions for registration are in the Task: Configure application properties in

the Declare a custom URL scheme instructions. The last instruction includes a

way to confirm registration.

Check that the correct custom URL scheme is specified to the SDK.

The scheme is specified by the app code accessing the AWController singleton

and setting its callbackScheme property before starting the SDK.

See the instructions to Initialize from SwiftUI or Initialize from Storyboard for

detailed steps.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 55 of 62

OpenURLRequestFailed error after flipping to Hub and
back
It could happen that the device flips to Hub and back but the initial check callback

receives an OpenURLRequestFailed error.

The Hub app could be showing an error like this.

Screen Capture: Hub error authenticating
application

The error returned to the callback could appear like this.

controllerDidFinishInitialCheck failed (extension in AWSDK):
AWError.AWError.SDK.OpenURLRequestFailed.failedToFetchEnvironmentDetailsFromAnchor.

The problem could be that the app isn’t recognized by Hub or UEM as one that

the enrolled end user should be running.

If the app hasn’t been installed via Workspace ONE at least once then do so

now. Instructions can be found in the Integration Preparation Guide discussed in

the Welcome section.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 56 of 62

Check the bundle identifier is the same in the UEM as in your app project.

You can check what bundle identifier the UEM has by following these steps.

1. Log in to the UEM and select the Organization Group (OG) of the end user

that you are using for development.

2. Navigate to: Resources, Apps, Native.

Depending on your console version and customization the navigation could

be different.

Resources might be labelled Apps & Books instead.

Apps might be labelled Applications instead.

However you navigate, a list of applications will open.

3. Select the Internal tab if it isn’t selected by default.

4. Select your app from the list.

Select the upper row for the app, not the version row.

This screen capture shows the location in the console user interface.

Screen capture: Select app in console

A detail screen will open for the app.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 57 of 62

The Application ID on the detail screen will be the bundle identifier.

The required value is below the app icon and name, and above the Summary

and Device tab selectors. This screen capture shows the location in the

console user interface.

Screen capture: Application ID in console

In that screen capture the bundle identifier and Application ID is

com.airwatch.hawkinsji.enterprise.ws1app

Compare that value with the Bundle Identifier in the Xcode project. You can see

it in the target editor. The location in the Xcode user interface is shown in this

screen capture.

Screen capture: Bundle identifier in Xcode

In that screen capture the bundle identifier is
com.airwatch.hawkinsji.enterprise.ws1app

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 58 of 62

If the bundle identifiers are different, then do one of the following.

Change the bundle identifier in Xcode to be the same as the Application ID in

UEM.

Generate a new app installer file for your app and upload it to the UEM

console. Instructions can be found in the Integration Preparation Guide

discussed in the Welcome section.

Otherwise, if the bundle identifiers are the same, then check the following.

Ensure that the app is assigned to the end user.

Setting end user assignment should have been done as part of following the

Integration Preparation Guide discussed in the Welcome section.

The easiest way to check could be to step through the instructions to

Configure and publish the application, which is where the app assignment is set.

Ensure that the app is being signed by the same developer team now as when

the app installer was uploaded to UEM. There’s no way to check the signing

team in the UEM user interface. If you aren’t sure then you have to generate a

new app installer file for your app and upload it to the UEM console.

Instructions can be found in the Integration Preparation Guide discussed in the

Welcome section.

Ensure that the correct team identifier has been passed to the SDK.

Check for the error code 9109. It could appear in the Xcode console in a

message like this.

[E] ErrorResponse received from anchor app:
Optional(AWOpenURLClient.OpenURLError.ErrorResponse("9109"))
[com.air-watch.sdk.main AWController+OpenURLRequestResponse:228]

It could also appear in the open URL received by your app. For example, if the

custom URL scheme is “ws1app” then the received URL could be like this.
ws1app://appRegisterResponse?erc=9109

That error code could mean that the teamID property is set to a different

value to the identifier of the team that signed the app. That causes Hub

verification of the app to fail. Rectify it by setting the property to the correct

value.

See the Task: Initialize the software development kit runtime for details of how

to obtain and set the required value.

-

-

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 59 of 62

Repeat enrollment or reset app state
In case you want to repeat the enrollment process, or want to completely reset

the state of the app on the device, note the following.

Removing an app from an iOS or iPadOS device doesn’t clear the app keychain.

The SDK will store some identifiers and other management data in the app

keychain. The operating system doesn’t provide any user interface to clear the

app keychain, other than by resetting the whole device to factory defaults.

You can add code to your app to delete its keychain. See the Appendix:

Keychain Clearance Sample Code for some Open Source sample code.

Clearing the keychain won’t delete any other data such as files written by the

SDK.

Removing the app from a device will remove any files written by the app or

SDK.

So a reset sequence could be like this.

1. Clear the keychain from within the app.

2. Uninstall the app.

3. Install the app via Workspace ONE. Instructions can be found in the Integration
Preparation Guide discussed in the Welcome section.

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 60 of 62

Appendix: Keychain Clearance Sample Code
If you want to add a keychain clearance option to your application, you can use

the code here. The use for keychain clearance is discussed in the Appendix:

Troubleshooting.

The sample code is also published here.

github.com/vmware-samples/…/KeychainClearance.swift

// Copyright 2023 VMware, Inc.
// SPDX-License-Identifier: BSD-2-Clause

import Foundation
import UIKit
import SwiftUI

// Handy extension to get an error message from an OSStatus.
extension OSStatus {
 var secErrorMessage: String {
 return (SecCopyErrorMessageString(self, nil) as String?) ?? "\(self)"
 }
}

func clearAppKeyChain() {
 [
 // List here is in the same order as in the reference documentation.
 kSecClassGenericPassword,
 kSecClassInternetPassword,
 kSecClassCertificate,
 kSecClassKey,
 kSecClassIdentity
].forEach {secClass in
 // Query to find all items of this security class.
 let query: [CFString: Any] = [kSecClass: secClass]
 let status = SecItemDelete(query as CFDictionary)
 if status == errSecSuccess || status == errSecItemNotFound {
 print("Deleted \"\(secClass)\" from keychain.")
 }
 else {
 print("Failed to delete \"\(secClass)\" from keychain:"
 , " \(status.secErrorMessage)")
 }
 }
}

private let alertTitle = "Delete the app keychain?"
private let alertMessage =
"Everything will be deleted and you will have to enrol again."
private let alertOKLabel = "Delete"
private let alertCancelLabel = "Cancel"

extension View {
 func alertClearAppKeyChain(isPresented: Binding<Bool>) -> some View {
 // TOTH https://flaviocopes.com/swiftui-alert/
 // Uses the deprecated Alert but still useful to get started.
 return self.alert(alertTitle, isPresented:isPresented) {
 Button(alertCancelLabel, role: .cancel) {}
 Button(alertOKLabel, role: .destructive) { clearAppKeyChain() }
 } message: {
 Text(alertMessage)
 }
 }
}

https://github.com/vmware-samples/workspace-ONE-SDK-integration-samples/blob/main/IntegrationGuideForiOS/Guides/23BaseIntegration/23Appendix_Keychain-Clearance-Sample-Code/KeychainClearance.swift

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 61 of 62

func alertClearAppKeyChain(_ viewController:UIViewController) {
 let confirm = UIAlertAction(title: alertOKLabel, style: .destructive) {_ in
 clearAppKeyChain()
 }
 let cancel = UIAlertAction(title: alertCancelLabel, style: .cancel) {_ in}
 let alert = UIAlertController(
 title: alertTitle,
 message: alertMessage,
 preferredStyle: .alert
)
 alert.addAction(confirm)
 alert.addAction(cancel)
 viewController.present(alert, animated: true)
}

Acknowledgements

Code for the extension to get an error message from an OSStatus.

github.com/vmware/captive-web-view/…/StoredKey.swift#L37

Reference documentation for kSecClass constants.

developer.apple.com/…/keychain_items/…

Query to find all items in a security class.

github.com/vmware/captive-web-view/…/StoredKey.swift#L184

https://github.com/vmware/captive-web-view/blob/061c9140fc16f88e3ab44cc170eb0d1f057adc0b/forApple/CaptiveCrypto/CaptiveCrypto/StoredKey.swift#L37
https://developer.apple.com/documentation/security/keychain_services/keychain_items/item_class_keys_and_values#1678477
https://github.com/vmware/captive-web-view/blob/061c9140fc16f88e3ab44cc170eb0d1f057adc0b/forApple/CaptiveCrypto/CaptiveCrypto/StoredKey.swift#L184

Workspace ONE Integration Guide for iOS and iPadOS

Base Integration Guide Page 62 of 62

Document Information

Published Locations
This document is available

in Markdown format, in the repository that also holds the sample code:

github.com/euc-releases/…/IntegrationGuideForiOS/…BaseIntegration/

in Portable Document Format (PDF), on the VMware website:

developer.omnissa.com/…/WorkspaceONE_iOS_BaseIntegration.pdf

Revision History
19may2023 First correct publication, for 23.04 SDK for iOS.

08jun2023 Publication for 23.06 SDK for iOS.

19jul2023 Publication for 23.07 SDK for iOS.

11sep2023 Publication for 23.09 SDK for iOS.

31oct2023 Publication for 23.10 SDK for iOS.

14Dec2023 Publication for 23.12 SDK for iOS.

29Jan2024 Publication for 24.01 SDK for iOS.

15May2024 Publication for 24.04 SDK for iOS.

01Jul2024 Publication for 24.06 SDK for iOS.

06Aug2024 Publication for 24.07 SDK for iOS.

30Sep2024 Publication for 24.09 SDK for iOS.

Legal
VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877–486–9273 Fax 650–427–5001 www.vmware.com
Copyright © 2024 VMware LLC. All rights reserved.
This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at https://www.vmware.com/go/patents. VMware
is a registered trademark or trademark of VMware, Inc. and its subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective
companies.

https://github.com/euc-releases/workspace-ONE-SDK-integration-samples/blob/main/IntegrationGuideForiOS/Guides/23BaseIntegration/readme.md
https://developer.omnissa.com/ws1-sdk-uem-ios/docs/integration/WorkspaceONE_iOS_BaseIntegration.pdf
https://www.vmware.com/go/patents

